近期要在公司内部做个Linux IO方面的培训, 整理下手头的资料给大家分享下
各种IO监视工具在Linux IO 体系结构中的位置 源自 Linux Performance and Tuning Guidelines.pdf 1 系统级IO监控iostatiostat -xdm 1 # 个人习惯
%util 代表磁盘繁忙程度。100% 表示磁盘繁忙, 0%表示磁盘空闲。但是注意,磁盘繁忙不代表磁盘(带宽)利用率高 argrq-sz 提交给驱动层的IO请求大小,一般不小于4K,不大于max(readahead_kb, max_sectors_kb) 可用于判断当前的IO模式,一般情况下,尤其是磁盘繁忙时, 越大代表顺序,越小代表随机 svctm 一次IO请求的服务时间,对于单块盘,完全随机读时,基本在7ms左右,既寻道+旋转延迟时间
注: 各统计量之间关系 =======================================
%util = ( r/s + w/s) * svctm / 1000 # 队列长度 = 到达率 * 平均服务时间 ======================================= 总结: iostat 统计的是通用块层经过合并(rrqm/s, wrqm/s)后,直接向设备提交的IO数据,可以反映系统整体的IO状况,但是有以下2个缺点: 1 距离业务层比较遥远,跟代码中的write,read不对应(由于系统预读 + pagecache + IO调度算法等因素, 也很难对应) 2 是系统级,没办法精确到进程,比如只能告诉你现在磁盘很忙,但是没办法告诉你是谁在忙,在忙什么? 2 进程级IO监控iotop 和 pidstat (仅rhel6u系列)iotop 顾名思义, io版的top pidstat 顾名思义, 统计进程(pid)的stat,进程的stat自然包括进程的IO状况 这两个命令,都可以按进程统计IO状况,因此可以回答你以下二个问题
pidstat 参数很多,仅给出几个个人习惯 pidstat -d 1 #只显示IO
pidstat -u -r -d -t 1 # -d IO 信息,
# -r 缺页及内存信息 iotop, 很简单,直接敲命令
block_dump, iodumpiotop 和 pidstat 用着很爽,但两者都依赖于/proc/pid/io文件导出的统计信息, 这个对于老一些的内核是没有的,比如rhel5u2 因此只好用以上2个穷人版命令来替代: echo 1 > /proc/sys/vm/block_dump # 开启block_dump,此时会把io信息输入到dmesg中 # 源码: submit_bio@ll_rw_blk.c:3213 watch -n 1 "dmesg -c | grep -oP \"\w+\(\d+\): (WRITE|READ)\" | sort | uniq -c" # 不停的dmesg -c echo 0 > /proc/sys/vm/block_dump # 不用时关闭
也可以使用现成的脚本 iodump, 具体参见 http://code.google.com/p/maatkit/source/browse/trunk/util/iodump?r=5389
iotop.stpsystemtap脚本,一看就知道是iotop命令的穷人复制版,需要安装Systemtap, 默认每隔5秒输出一次信息 stap iotop.stp # examples/io/iotop.stp 总结 进程级IO监控 ,
但是也没有办法跟业务层的read,write联系在一起,同时颗粒度较粗,没有办法告诉你,当前进程读写了哪些文件? 耗时? 大小 ? 3 业务级IO监控ioprofileioprofile 命令本质上是 lsof + strace, 具体下载可见 http://code.google.com/p/maatkit/ ioprofile 可以回答你以下三个问题: 1 当前进程某时间内,在业务层面读写了哪些文件(read, write)? 2 读写次数是多少?(read, write的调用次数) 3 读写数据量多少?(read, write的byte数) 假设某个行为会触发程序一次IO动作,例如: "一个页面点击,导致后台读取A,B,C文件" ============================================ ./io_event # 假设模拟一次IO行为,读取A文件一次, B文件500次, C文件500次 ioprofile -p `pidof io_event` -c count # 读写次数
ioprofile -p `pidof io_event` -c times # 读写耗时
注: ioprofile 仅支持多线程程序,对单线程程序不支持. 对于单线程程序的IO业务级分析,strace足以。 总结: ioprofile本质上是strace,因此可以看到read,write的调用轨迹,可以做业务层的io分析(mmap方式无能为力) 4 文件级IO监控文件级IO监控可以配合/补充"业务级和进程级"IO分析 文件级IO分析,主要针对单个文件, 回答当前哪些进程正在对某个文件进行读写操作. 1 lsof 或者 ls /proc/pid/fd 2 inodewatch.stp lsof 告诉你 当前文件由哪些进程打开 lsof ../io # io目录 当前由 bash 和 lsof 两个进程打开
lsof 命令 只能回答静态的信息, 并且"打开" 并不一定"读取", 对于 cat ,echo这样的命令, 打开和读取都是瞬间的,lsof很难捕捉 可以用 inodewatch.stp 来弥补 stap inodewatch.stp major minor inode # 主设备号, 辅设备号, 文件inode节点号 stap inodewatch.stp 0xfd 0x00 523170 # 主设备号, 辅设备号, inode号,可以通过 stat 命令获得
5 IO模拟器iotest.py # 见附录 开发人员可以 利用 ioprofile (或者 strace) 做详细分析系统的IO路径,然后在程序层面做相应的优化。 但是一般情况下调整程序,代价比较大,尤其是当不确定修改方案到底能不能有效时,最好有某种模拟途径以快速验证。 以为我们的业务为例,发现某次查询时,系统的IO访问模式如下: 访问了A文件一次 访问了B文件500次, 每次16字节, 平均间隔 502K 访问了C文件500次, 每次200字节, 平均间隔 4M 这里 B,C文件是交错访问的, 既 1 先访问B,读16字节, 2 再访问C,读200字节, 3 回到B,跳502K后再读16字节, 4 回到C,跳4M后,再读200字节 5 重复500次 strace 文件如下:
一个简单朴素的想法, 将B,C交错读,改成先批量读B , 再批量读C,因此调整strace 文件如下:
将调整后的strace文件, 作为输入交给 iotest.py, iotest.py 按照 strace 文件中的访问模式, 模拟相应的IO iotest.py -s io.strace -f fmap fmap 为映射文件,将strace中的222,333等fd,映射到实际的文件中 ===========================
111 = /opt/work/io/A.data 6 磁盘碎片整理一句话: 只要磁盘容量不常年保持80%以上,基本上不用担心碎片问题。 如果实在担心,可以用 defrag 脚本 7 其他IO相关命令blockdev 系列 ======================================= blockdev --getbsz /dev/sdc1 # 查看sdc1盘的块大小 block blockdev --getra /dev/sdc1 # 查看sdc1盘的预读(readahead_kb)大小 blockdev --setra 256 /dev/sdc1 # 设置sdc1盘的预读(readahead_kb)大小,低版的内核通过/sys设置,有时会失败,不如blockdev靠谱 ======================================= 附录 iotest.py #! /usr/bin/env python# -*- coding: gbk -*-import os import re import timeit from ctypes import CDLL, create_string_buffer, c_ulong, c_longlong from optparse import OptionParser usage = '''%prog -s strace.log -f fileno.map ''' _glibc = None _glibc_pread = None _c_char_buf = None _open_file = [] def getlines(filename): _lines = [] with open(filename,'r') as _f: for line in _f: if line.strip() != "": _lines.append(line.strip()) return _lines def parsecmdline(): parser = OptionParser(usage) parser.add_option("-s", "--strace", dest="strace_filename", help="strace file", metavar="FILE") parser.add_option("-f", "--fileno", dest="fileno_filename", help="fileno file", metavar="FILE") (options, args) = parser.parse_args() if options.strace_filename is None: parser.error("strace is not specified.") ifnot os.path.exists(options.strace_filename): parser.error("strace file does not exist.") if options.fileno_filename is None: parser.error("fileno is not specified.") ifnot os.path.exists(options.strace_filename): parser.error("fileno file does not exist.") return options.strace_filename, options.fileno_filename # [type, ...]# [pread, fno, count, offset]# pread(15, "", 4348, 140156928)def parse_strace(filename): lines = getlines(filename) action = [] _regex_str = r'(pread|pread64)[^\d]*(\d+),\s*[^,]*,\s*([\dkKmM*+\-. ]*),\s*([\dkKmM*+\-. ]*)'for i in lines: _match = re.match(_regex_str, i) if _match is None: continue# 跳过无效行 _type, _fn, _count, _off = _match.group(1), _match.group(2), _match.group(3), _match.group(4) _off = _off.replace('k', " * 1024 ").replace('K', " * 1024 ").replace('m', " * 1048576 ").replace('M', " * 1048576 ") _count = _count.replace('k', " * 1024 ").replace('K', " * 1024 ").replace('m', " * 1048576 ").replace('M', " * 1048576 ") #print _off action.append([_type, _fn, str(int(eval(_count))), str(int(eval(_off))) ]) return action def parse_fileno(filename): lines = getlines(filename) fmap = {} for i in lines: if i.strip().startswith("#"): continue# 注释行 _split = [j.strip() for j in i.split("=")] if len(_split) != 2: continue# 无效行 fno, fname = _split[0], _split[1] fmap[fno] = fname return fmap def simulate_before(strace, fmap): global _open_file, _c_char_buf rfmap = {} for i in fmap.values(): _f = open(i, "r+b") #print "open {0}:{1}".format(_f.fileno(), i) _open_file.append(_f) rfmap[i] = str(_f.fileno()) # 反向映射 to_read = 4 * 1024 # 默认4K buffor i in strace: i[1] = rfmap[fmap[i[1]]] # fid -> fname -> fid 映射转换 to_read = max(to_read, int(i[2])) #print "read buffer len: %d Byte" % to_read _c_char_buf = create_string_buffer(to_read) def simulate_after(): global _open_file for _f in _open_file: _f.close() def simulate(actions): #timeit.time.sleep(10) # 休息2秒钟, 以便IO间隔 start = timeit.time.time() for act in actions: __simulate__(act) finish = timeit.time.time() return finish - start def__simulate__(act): global _glibc, _glibc_pread, _c_char_buf if"pread"in act[0]: _fno = int(act[1]) _buf = _c_char_buf _count = c_ulong(int(act[2])) _off = c_longlong(int(act[3])) _glibc_pread(_fno, _buf, _count, _off) #print _glibc.time(None)else: passpassdef loadlibc(): global _glibc, _glibc_pread _glibc = CDLL("libc.so.6") _glibc_pread = _glibc.pread64 if__name__ == "__main__": _strace, _fileno = parsecmdline() # 解析命令行参数 loadlibc() # 加载动态库 _action = parse_strace(_strace) # 解析 action 文件 _fmap = parse_fileno(_fileno) # 解析 文件名映射 文件 simulate_before(_action, _fmap) # 预处理#print "total io operate: %d" % (len(_action))#for |