众所周知,反正弦函数asin有以下公式(如在计算器中是弧度制下):
百度百科搜索三角函数公式,在泰勒展开式一节中有以下公式:
双阶乘实现:
-
-
-
-
-
-
asin函数实现
-
-
-
-
a=(doubleFact(2*k-1)/doubleFact(2*k))*(pow(x,2*k+1)/(2*k+1))
-
-
其中x为角度(弧度),t为计算次数。
注:代码奇慢无比,不要真正用来计算pi,又慢精度又不高,建议只用来编写CPU压力测试程序!
总代吗贴出来:
-
-
-
-
-
-
-
-
-
-
-
a=(doubleFact(2*k-1)/doubleFact(2*k))*(pow(x,2*k+1)/(2*k+1))
-
-
-
-
-
计算结果:
-
-
k=1,a=0.16666666666666666
-
k=2,a=0.07500000000000001
-
k=3,a=0.04464285714285714
-
k=4,a=0.030381944444444444
-
k=5,a=0.022372159090909092
-
k=6,a=0.017352764423076924
-
k=7,a=0.013964843749999999
-
k=8,a=0.011551800896139705
-
k=9,a=0.009761609529194078
-
k=10,a=0.008390335809616815
-
k=11,a=0.007312525873598845
-
k=12,a=0.006447210311889649
-
k=13,a=0.005740037670841923
-
k=14,a=0.005153309682319904
-
k=15,a=0.004660143486915096
-
k=16,a=0.004240907093679363
-
k=17,a=0.003880964558837669
-
k=18,a=0.0035692053938259347
-
k=19,a=0.0032970595034734844
-
k=20,a=0.0030578216492580306
-
k=21,a=0.002846178401108942
-
k=22,a=0.00265787063820729
-
k=23,a=0.0024894486782468836
-
k=24,a=0.002338091892111975
-
k=25,a=0.0022014739737101384
-
k=26,a=0.002077661032518167
-
k=27,a=0.0019650336162772837
-
k=28,a=0.0018622264064031273
-
k=29,a=0.0017680811205154183
-
k=30,a=0.0016816093935831068
-
k=31,a=0.0016019632753514438
-
k=32,a=0.0015284115961225677
-
k=33,a=0.0014603208940791154
-
k=34,a=0.0013971399176302534
-
k=35,a=0.0013383869512751784
-
k=36,a=0.0012836393876290285
-
k=37,a=0.001232525098500017
-
k=38,a=0.0011847152561624392
-
k=39,a=0.0011399183307022236
-
k=40,a=0.0010978750465914472
-
k=41,a=0.001058354125872243
-
k=42,a=0.0010211486797106276
-
k=43,a=0.0009860731369833312
-
k=44,a=0.0009529606197429564
-
k=45,a=0.0009216606921836336
-
k=46,a=0.0008920374230917098
-
k=47,a=0.0008639677124658675
-
k=48,a=0.000837339841602712
-
k=49,a=0.0008120522129086703
-
k=50,a=0.0007880122513582057
-
k=51,a=0.0007651354441371649
-
k=52,a=0.0007433444987958959
-
k=53,a=0.0007225686033525614
-
k=54,a=0.0007027427743614913
-
k=55,a=0.0006838072810965503
-
k=56,a=0.0006657071357767537
-
k=57,a=0.000648391641245871
-
k=58,a=0.0006318139887619102
-
k=59,a=0.0006159308995984751
-
k=60,a=0.0006007023050422869
-
k=61,a=0.0005860910601175613
-
k=62,a=0.0005720626870011989
-
k=63,a=0.0005585851446315293
-
k=64,a=0.0005456286214729855
-
k=65,a=0.0005331653487922461
-
k=66,a=0.0005211694321385132
-
k=67,a=0.0005096166990104013
-
k=68,a=0.000498484560941636
-
k=69,a=0.0004877518884534234
-
k=70,a=0.000477398897508034
-
k=71,a=0.000467407046260082
-
k=72,a=0.00045775894104274026
-
k=73,a=0.00044843825064875664
-
k=74,a=0.0004394296280731444
-
k=75,a=0.00043071863897800795
-
k=76,a=0.0004222916962219453
-
k=77,a=0.0004141359998684339
-
k=78,a=0.0004062394821508707
-
k=79,a=0.00039859075692766545
-
k=80,a=0.00039117907320994984
-
k=81,a=0.0003839942723879085
-
k=82,a=0.00037702674882018997
-
k=83,a=0.000370267413484946
-
k=84,a=0.0003637076604213038
-
k=85,a=0.0003573393357169886
-
k=86,a=0.0003511547088217658
-
k=87,a=0.00034514644598773823
-
k=88,a=0.00033930758565660254
-
k=89,a=0.00033363151563102445
-
k=90,a=0.0003281119518825554
-
k=91,a=0.00032274291886219894
-
k=92,a=0.00031751873119201474
-
k=93,a=0.0003124339766271837
-
k=94,a=0.00030748350018788655
-
k=95,a=0.00030266238936928896
-
k=96,a=0.0002979659603459907
-
k=97,a=0.0002933897450945759
-
k=98,a=0.0002889294793644786
-
k=99,a=0.00028458109143332955
-
k=100,a=0.0002803406915883404
-
(责任编辑:IT) |