1. 引言
线程(thread)技术早在60年代就被提出,但真正应用多线程到操作系统中去,是在80年代中期,solaris是这方面的佼佼者。传统的Unix也支持线程的概念,但是在一个进程(process)中只允许有一个线程,这样多线程就意味着多进程。现在,多线程技术已经被许多操作系统所支持,包括Windows/NT,当然,也包括Linux。
2. 简单的多线程编程Linux系统下的多线程遵循POSIX线程接口,称为pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。顺便说一下,Linux下pthread的实现是通过系统调用clone()来实现的。clone()是Linux所特有的系统调用,它的使用方式类似fork,关于clone()的详细情况,有兴趣的读者可以去查看有关文档说明。下面我们展示一个最简单的多线程程序threads.cpp。 //Threads.cpp #include <iostream> #include <unistd.h> #include <pthread.h> using namespace std; void *thread(void *ptr) { for(int i = 0;i < 3;i++) { sleep(1); cout << "This is a pthread." << endl; } return 0; } int main() { pthread_t id; int ret = pthread_create(&id, NULL, thread, NULL); if(ret) { cout << "Create pthread error!" << endl; return 1; } for(int i = 0;i < 3;i++) { cout << "This is the main process." << endl; sleep(1); } pthread_join(id, NULL); return 0; }
我们编译并运行此程序,可以得到如下结果:
前后两次结果不一样,这是两个线程争夺CPU资源的结果。上面的示例中,我们使用到了两个函数,pthread_create和pthread_join,并声明了一个pthread_t型的变量。 typedef unsigned long int pthread_t; 它是一个线程的标识符。函数pthread_create用来创建一个线程,它的原型为: extern int pthread_create __P ((pthread_t *__thread, __const pthread_attr_t *__attr, void *(*__start_routine) (void *), void *__arg));
第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。这里,我们的函数thread不需要参数,所以最后一个参数设为空指针。第二个参数我们也设为空指针,这样将生成默认属性的线程。对线程属性的设定和修改我们将在下一节阐述。当创建线程成功时,函数返回0,若不为0则说明创建线程失败,常见的错误返回代码为EAGAIN和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。 extern int pthread_join __P ((pthread_t __th, void **__thread_return)); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。一个线程的结束有两种途径,一种是象我们上面的例子一样,函数结束了,调用它的线程也就结束了;另一种方式是通过函数pthread_exit来实现。它的函数原型为: extern void pthread_exit __P ((void *__retval)) __attribute__ ((__noreturn__));
唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。最后要说明的是,一个线程不能被多个线程等待,否则第一个接收到信号的线程成功返回,其余调用pthread_join的线程则返回错误代码ESRCH。
3. 修改线程的属性
在上一节的例子里,我们用pthread_create函数创建了一个线程,在这个线程中,我们使用了默认参数,即将该函数的第二个参数设为NULL。的确,对大多数程序来说,使用默认属性就够了,但我们还是有必要来了解一下线程的有关属性。
#include <pthread.h> pthread_attr_t attr; pthread_t tid; /*初始化属性值,均设为默认值*/ pthread_attr_init(&attr); pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM); pthread_create(&tid, &attr, (void *) my_function, NULL);
线程的分离状态决定一个线程以什么样的方式来终止自己。在上面的例子中,我们采用了线程的默认属性,即为非分离状态,这种情况下,原有的线程等待创建的线程结束。只有当pthread_join()函数返回时,创建的线程才算终止,才能释放自己占用的系统资源。而分离线程不是这样子的,它没有被其他的线程所等待,自己运行结束了,线程也就终止了,马上释放系统资源。程序员应该根据自己的需要,选择适当的分离状态。设置线程分离状态的函数为pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)。第二个参数可选为PTHREAD_CREATE_DETACHED(分离线程)和 PTHREAD _CREATE_JOINABLE(非分离线程)。这里要注意的一点是,如果设置一个线程为分离线程,而这个线程运行又非常快,它很可能在pthread_create函数返回之前就终止了,它终止以后就可能将线程号和系统资源移交给其他的线程使用,这样调用pthread_create的线程就得到了错误的线程号。要避免这种情况可以采取一定的同步措施,最简单的方法之一是可以在被创建的线程里调用pthread_cond_timewait函数,让这个线程等待一会儿,留出足够的时间让函数pthread_create返回。设置一段等待时间,是在多线程编程里常用的方法。但是注意不要使用诸如wait()之类的函数,它们是使整个进程睡眠,并不能解决线程同步的问题。 另外一个可能常用的属性是线程的优先级,它存放在结构sched_param中。用函数pthread_attr_getschedparam和函数pthread_attr_setschedparam进行存放,一般说来,我们总是先取优先级,对取得的值修改后再存放回去。下面即是一段简单的例子。 #include <pthread.h> #include <sched.h> pthread_attr_t attr; pthread_t tid; sched_param param; int newprio=20; pthread_attr_init(&attr); pthread_attr_getschedparam(&attr, ¶m); param.sched_priority=newprio; pthread_attr_setschedparam(&attr, ¶m); pthread_create(&tid, &attr, (void *)myfunction, myarg);
4. 线程的数据处理 extern int pthread_key_create __P ((pthread_key_t *__key,void (*__destr_function) (void *))); 第一个参数为指向一个键值的指针,第二个参数指明了一个destructor函数,如果这个参数不为空,那么当每个线程结束时,系统将调用这个函数来释放绑定在这个键上的内存块。这个函数常和函数pthread_once ((pthread_once_t*once_control, void (*initroutine) (void)))一起使用,为了让这个键只被创建一次。函数pthread_once声明一个初始化函数,第一次调用pthread_once时它执行这个函数,以后的调用将被它忽略。 在下面的例子中,我们创建一个键,并将它和某个数据相关联。我们要定义一个函数createWindow,这个函数定义一个图形窗口(数据类型为Fl_Window *,这是图形界面开发工具FLTK中的数据类型)。由于各个线程都会调用这个函数,所以我们使用线程数据。 /* 声明一个键*/ pthread_key_t myWinKey; /* 函数 createWindow */ void createWindow ( void ) { Fl_Window * win; static pthread_once_t once= PTHREAD_ONCE_INIT; /* 调用函数createMyKey,创建键*/ pthread_once ( & once, createMyKey) ; /*win指向一个新建立的窗口*/ win=new Fl_Window( 0, 0, 100, 100, "MyWindow"); /* 对此窗口作一些可能的设置工作,如大小、位置、名称等*/ setWindow(win); /* 将窗口指针值绑定在键myWinKey上*/ pthread_setpecific ( myWinKey, win); } /* 函数 createMyKey,创建一个键,并指定了destructor */ void createMyKey ( void ) { pthread_keycreate(&myWinKey, freeWinKey); } /* 函数 freeWinKey,释放空间*/ void freeWinKey ( Fl_Window * win){ delete win; } 这样,在不同的线程中调用函数createMyWin,都可以得到在线程内部均可见的窗口变量,这个变量通过函数pthread_getspecific得到。在上面的例子中,我们已经使用了函数pthread_setspecific来将线程数据和一个键绑定在一起。这两个函数的原型如下: extern int pthread_setspecific __P ((pthread_key_t __key,__const void *__pointer)); extern void *pthread_getspecific __P ((pthread_key_t __key)); 这两个函数的参数意义和使用方法是显而易见的。要注意的是,用pthread_setspecific为一个键指定新的线程数据时,必须自己释放原有的线程数据以回收空间。这个过程函数pthread_key_delete用来删除一个键,这个键占用的内存将被释放,但同样要注意的是,它只释放键占用的内存,并不释放该键关联的线程数据所占用的内存资源,而且它也不会触发函数pthread_key_create中定义的destructor函数。线程数据的释放必须在释放键之前完成。
4.2 互斥锁 void reader_function ( void ); void writer_function ( void ); char buffer; int buffer_has_item=0; pthread_mutex_t mutex; struct timespec delay; void main ( void ){ pthread_t reader; /* 定义延迟时间*/ delay.tv_sec = 2; delay.tv_nec = 0; /* 用默认属性初始化一个互斥锁对象*/ pthread_mutex_init (&mutex,NULL); pthread_create(&reader, pthread_attr_default, (void *)&reader_function), NULL); writer_function( ); } void writer_function (void){ while(1){ /* 锁定互斥锁*/ pthread_mutex_lock (&mutex); if (buffer_has_item==0){ buffer=make_new_item( ); buffer_has_item=1; } /* 打开互斥锁*/ pthread_mutex_unlock(&mutex); pthread_delay_np(&delay); } } void reader_function(void){ while(1){ pthread_mutex_lock(&mutex); if(buffer_has_item==1){ consume_item(buffer); buffer_has_item=0; } pthread_mutex_unlock(&mutex); pthread_delay_np(&delay); } }
这里声明了互斥锁变量mutex,结构pthread_mutex_t为不公开的数据类型,其中包含一个系统分配的属性对象。函数pthread_mutex_init用来生成一个互斥锁。NULL参数表明使用默认属性。如果需要声明特定属性的互斥锁,须调用函数pthread_mutexattr_init。函数pthread_mutexattr_setpshared和函数pthread_mutexattr_settype用来设置互斥锁属性。前一个函数设置属性pshared,它有两个取值,PTHREAD_PROCESS_PRIVATE和PTHREAD_PROCESS_SHARED。前者用来不同进程中的线程同步,后者用于同步本进程的不同线程(说反了,应该颠倒过来)。在上面的例子中,我们使用的是默认属性PTHREAD_PROCESS_ PRIVATE。后者用来设置互斥锁类型,可选的类型有PTHREAD_MUTEX_NORMAL、PTHREAD_MUTEX_ERRORCHECK、PTHREAD_MUTEX_RECURSIVE和PTHREAD _MUTEX_DEFAULT。它们分别定义了不同的上锁、解锁机制,一般情况下,选用最后一个默认属性。
4.3 条件变量 extern int pthread_cond_init __P ((pthread_cond_t *__cond,__const pthread_condattr_t *__cond_attr));
其中cond是一个指向结构pthread_cond_t的指针,cond_attr是一个指向结构pthread_condattr_t的指针。结构pthread_condattr_t是条件变量的属性结构,和互斥锁一样我们可以用它来设置条件变量是进程内可用还是进程间可用,默认值是PTHREAD_ PROCESS_PRIVATE,即此条件变量被同一进程内的各个线程使用。注意初始化条件变量只有未被使用时才能重新初始化或被释放。释放一个条件变量的函数为pthread_cond_ destroy(pthread_cond_t cond)。 它的函数原型为: extern int pthread_cond_wait __P ((pthread_cond_t *__cond, pthread_mutex_t *__mutex));
线程解开mutex指向的锁并被条件变量cond阻塞。线程可以被函数pthread_cond_signal和函数pthread_cond_broadcast唤醒,但是要注意的是,条件变量只是起阻塞和唤醒线程的作用,具体的判断条件还需用户给出,例如一个变量是否为0等等,这一点我们从后面的例子中可以看到。线程被唤醒后,它将重新检查判断条件是否满足,如果还不满足,一般说来线程应该仍阻塞在这里,被等待被下一次唤醒。这个过程一般用while语句实现。 extern int pthread_cond_timedwait __P ((pthread_cond_t *__cond, pthread_mutex_t *__mutex, __const struct timespec *__abstime));
它比函数pthread_cond_wait()多了一个时间参数,经历abstime段时间后,即使条件变量不满足,阻塞也被解除。 pthread_cond_signal()的一个简单的例子。 pthread_mutex_t count_lock; pthread_cond_t count_nonzero; unsigned count; decrement_count () { pthread_mutex_lock (&count_lock); while(count==0) pthread_cond_wait( &count_nonzero, &count_lock); count=count -1; pthread_mutex_unlock (&count_lock); } increment_count(){ pthread_mutex_lock(&count_lock); if(count==0) pthread_cond_signal(&count_nonzero); count=count+1; pthread_mutex_unlock(&count_lock); }
count值为0时,decrement函数在pthread_cond_wait处被阻塞,并打开互斥锁count_lock。此时,当调用到函数increment_count时,pthread_cond_signal()函数改变条件变量,告知decrement_count()停止阻塞。读者可以试着让两个线程分别运行这两个函数,看看会出现什么样的结果。
4.4 信号量 /* File sem.c */ #include <stdio.h> #include <pthread.h> #include <semaphore.h> #define MAXSTACK 100 int stack[MAXSTACK][2]; int size=0; sem_t sem; /* 从文件1.dat读取数据,每读一次,信号量加一*/ void ReadData1(void){ FILE *fp=fopen("1.dat","r"); while(!feof(fp)){ fscanf(fp,"%d %d",&stack[size][0],&stack[size][1]); sem_post(&sem); ++size; } fclose(fp); } /*从文件2.dat读取数据*/ void ReadData2(void){ FILE *fp=fopen("2.dat","r"); while(!feof(fp)){ fscanf(fp,"%d %d",&stack[size][0],&stack[size][1]); sem_post(&sem); ++size; } fclose(fp); } /*阻塞等待缓冲区有数据,读取数据后,释放空间,继续等待*/ void HandleData1(void){ while(1){ sem_wait(&sem); printf("Plus:%d+%d=%d\n",stack[size][0],stack[size][1], stack[size][0]+stack[size][1]); --size; } } void HandleData2(void){ while(1){ sem_wait(&sem); printf("Multiply:%d*%d=%d\n",stack[size][0],stack[size][1], stack[size][0]*stack[size][1]); --size; } } int main(void){ pthread_t t1,t2,t3,t4; sem_init(&sem,0,0); pthread_create(&t1,NULL,(void *)HandleData1,NULL); pthread_create(&t2,NULL,(void *)HandleData2,NULL); pthread_create(&t3,NULL,(void *)ReadData1,NULL); pthread_create(&t4,NULL,(void *)ReadData2,NULL); /* 防止程序过早退出,让它在此无限期等待*/ pthread_join(t1,NULL); }
在Linux下,我们用命令gcc -lpthread sem.c -o sem生成可执行文件sem。 我们事先编辑好数据文件1.dat和2.dat,假设它们的内容分别为1 2 3 4 5 6 7 8 9 10和 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 ,我们运行sem,得到如下的结果: 从中我们可以看出各个线程间的竞争关系。而数值并未按我们原先的顺序显示出来这是由于size这个数值被各个线程任意修改的缘故。这也往往是多线程编程要注意的问题。
多线程编程是一个很有意思也很有用的技术,使用多线程技术的网络蚂蚁是目前最常用的下载工具之一,使用多线程技术的grep比单线程的grep要快上几倍,类似的例子还有很多。希望大家能用多线程技术写出高效实用的好程序来!
摘自:http://www.cnblogs.com/youtherhome/archive/2013/03/17/2964195.html (责任编辑:IT) |