- 用Undo Log实现原子性和持久化的事务的简化过程
假设有A、B两个数据,值分别为1,2。
A.事务开始.
B.记录A=1到undo log.
C.修改A=3.
D.记录B=2到undo log.
E.修改B=4.
F.将undo log写到磁盘。
G.将数据写到磁盘。
H.事务提交
这里有一个隐含的前提条件:‘数据都是先读到内存中,然后修改内存中的数据,最后将数据写回磁盘’。
之所以能同时保证原子性和持久化,是因为以下特点:
A. 更新数据前记录Undo log。
B. 为了保证持久性,必须将数据在事务提交前写到磁盘。只要事务成功提交,数据必然已经持久化。
C. Undo log必须先于数据持久化到磁盘。如果在G,H之间系统崩溃,undo log是完整的,
可以用来回滚事务。
D. 如果在A-F之间系统崩溃,因为数据没有持久化到磁盘。所以磁盘上的数据还是保持在事务开始前的状态。
缺陷:每个事务提交前将数据和Undo Log写入磁盘,这样会导致大量的磁盘IO,因此性能很低。
如果能够将数据缓存一段时间,就能减少IO提高性能。但是这样就会丧失事务的持久性。
- 原理
和Undo Log相反,Redo Log记录的是新数据的备份。在事务提交前,只要将Redo Log持久化即可,
不需要将数据持久化。当系统崩溃时,虽然数据没有持久化,但是Redo Log已经持久化。系统可以根据
Redo Log的内容,将所有数据恢复到最新的状态。
- Undo + Redo事务的简化过程
假设有A、B两个数据,值分别为1,2.
A.事务开始.
B.记录A=1到undo log.
C.修改A=3.
D.记录A=3到redo log.
E.记录B=2到undo log.
F.修改B=4.
G.记录B=4到redo log.
H.将redo log写入磁盘。
I.事务提交
- Undo + Redo事务的特点
A. 为了保证持久性,必须在事务提交前将Redo Log持久化。
B. 数据不需要在事务提交前写入磁盘,而是缓存在内存中。
C. Redo Log 保证事务的持久性。
D. Undo Log 保证事务的原子性。
E. 有一个隐含的特点,数据必须要晚于redo log写入持久存储。
- IO性能
Undo + Redo的设计主要考虑的是提升IO性能。虽说通过缓存数据,减少了写数据的IO.
但是却引入了新的IO,即写Redo Log的IO。如果Redo Log的IO性能不好,就不能起到提高性能的目的。
为了保证Redo Log能够有比较好的IO性能,InnoDB 的 Redo Log的设计有以下几个特点:
A. 尽量保持Redo Log存储在一段连续的空间上。因此在系统第一次启动时就会将日志文件的空间完全分配。
以顺序追加的方式记录Redo Log,通过顺序IO来改善性能。
B. 批量写入日志。日志并不是直接写入文件,而是先写入redo log buffer.当需要将日志刷新到磁盘时
(如事务提交),将许多日志一起写入磁盘.
C. 并发的事务共享Redo Log的存储空间,它们的Redo Log按语句的执行顺序,依次交替的记录在一起,
以减少日志占用的空间。例如,Redo Log中的记录内容可能是这样的:
记录1: <trx1, insert …>
记录2: <trx2, update …>
记录3: <trx1, delete …>
记录4: <trx3, update …>
记录5: <trx2, insert …>
D. 因为C的原因,当一个事务将Redo Log写入磁盘时,也会将其他未提交的事务的日志写入磁盘。
E. Redo Log上只进行顺序追加的操作,当一个事务需要回滚时,它的Redo Log记录也不会从
Redo Log中删除掉。
02 – 恢复(Recovery)
- 恢复策略
前面说到未提交的事务和回滚了的事务也会记录Redo Log,因此在进行恢复时,这些事务要进行特殊的
的处理.有2中不同的恢复策略:
A. 进行恢复时,只重做已经提交了的事务。
B. 进行恢复时,重做所有事务包括未提交的事务和回滚了的事务。然后通过Undo Log回滚那些
未提交的事务。
这里有针对innodb的更多信息,很好的资料
http://linux.chinaitlab.com/manual/database/innodbzh/
(责任编辑:IT) |