当前位置: > Linux新闻 >

Apache Spark 2.0.0 发布,APIs 更新

时间:2016-08-02 22:05来源:linux.it.net.cn 作者:IT

Apache Spark 2.0.0 发布了,Apache Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

该版本主要更新APIs,支持SQL 2003,支持R UDF ,增强其性能。300个开发者贡献了2500补丁程序。

Apache Spark 2.0.0 APIs更新记录如下:

  • Unifying DataFrame and Dataset: In Scala and Java, DataFrame and Dataset have been unified, i.e. DataFrame is just a type alias for Dataset of Row. In Python and R, given the lack of type safety, DataFrame is the main programming interface.

  • SparkSession: new entry point that replaces the old SQLContext and HiveContext for DataFrame and Dataset APIs. SQLContext and HiveContext are kept for backward compatibility.

  • A new, streamlined configuration API for SparkSession

  • Simpler, more performant accumulator API

  • A new, improved Aggregator API for typed aggregation in Datasets

Apache Spark 2.0.0 SQL更新记录如下:

  • A native SQL parser that supports both ANSI-SQL as well as Hive QL

  • Native DDL command implementations

  • Subquery support, including

    • Uncorrelated Scalar Subqueries

    • Correlated Scalar Subqueries

    • NOT IN predicate Subqueries (in WHERE/HAVING clauses)

    • IN predicate subqueries (in WHERE/HAVING clauses)

    • (NOT) EXISTS predicate subqueries (in WHERE/HAVING clauses)

  • View canonicalization support

一些新特性:

  • Native CSV data source, based on Databricks’ spark-csv module

  • Off-heap memory management for both caching and runtime execution

  • Hive style bucketing support

  • Approximate summary statistics using sketches, including approximate quantile, Bloom filter, and count-min sketch.

性能增强:

  • Substantial (2 - 10X) performance speedups for common operators in SQL and DataFrames via a new technique called whole stage code generation.

  • Improved Parquet scan throughput through vectorization

  • Improved ORC performance

  • Many improvements in the Catalyst query optimizer for common workloads

  • Improved window function performance via native implementations for all window functions

  • Automatic file coalescing for native data sources

更多发布信息,可查看发布说明

下载地址:http://spark.apache.org/downloads.html




(责任编辑:IT)
------分隔线----------------------------
栏目列表
推荐内容