> Linux集群 > Hadoop >

hadoop-streaming 例子

Hadoop Streaming是Hadoop提供的一个编程工具,它允许用户使用任何可执行文件或者脚本文件作为Mapper和Reducer,例如:

采用shell脚本语言中的一些命令作为mapper和reducer(cat作为mapper,wc作为reducer)

 

 

1
2
bin/hadoop jar contrib/streaming/hadoop-0.20.2-streaming.jar -input
input -output output -mapper /bin/cat -reducer /usr/bin/wc

 

 

mapper和reducer会从标准输入中读取用户数据,一行一行处理后发送给标准输出。Streaming工具会创建MapReduce作业,发送给各个tasktracker,同时监控整个作业的执行过程。

如果一个文件(可执行或者脚本)作为mapper,mapper初始化时,每一个mapper任务会把该文件作为一个单独进程启动,mapper任务运行时,它把输入切分成行并把每一行提供给可执行文件进程的标准输入。 同时,mapper收集可执行文件进程标准输出的内容,并把收到的每一行内容转化成key/value对,作为mapper的输出。 默认情况下,一行中第一个tab之前的部分作为key,之后的(不包括tab)作为value。如果没有tab,整行作为key值,value值为null。

对于reducer,类似。

以上是Map/Reduce框架和streaming mapper/reducer之间的基本通信协议。

Hadoop Streaming用法

Usage: $HADOOP_HOME/bin/hadoop jar \

$HADOOP_HOME/contrib/streaming/hadoop-*-streaming.jar [options]

options:

(1)-input:输入文件路径

(2)-output:输出文件路径

(3)-mapper:用户自己写的mapper程序,可以是可执行文件或者脚本

(4)-reducer:用户自己写的reducer程序,可以是可执行文件或者脚本

(5)-file:打包文件到提交的作业中,可以是mapper或者reducer要用的输入文件,如配置文件,字典等。

(6)-partitioner:用户自定义的partitioner程序

(7)-combiner:用户自定义的combiner程序(必须用java实现)

(8)-D:作业的一些属性(以前用的是-jonconf),具体有:
            1)mapred.map.tasks:map task数目
            2)mapred.reduce.tasks:reduce task数目
            3)stream.map.input.field.separator/stream.map.output.field.separator: map task输入/输出数
据的分隔符,默认均为\t。
             4)stream.num.map.output.key.fields:指定map task输出记录中key所占的域数目
             5)stream.reduce.input.field.separator/stream.reduce.output.field.separator:reduce task输入/输出数据的分隔符,默认均为\t。
             6)stream.num.reduce.output.key.fields:指定reduce task输出记录中key所占的域数目
另外,Hadoop本身还自带一些好用的Mapper和Reducer:

参照:

 

http://dongxicheng.org/mapreduce/hadoop-streaming-programming/



(责任编辑:IT)