当前位置: > Linux安全 >

CeresDB 1.0 正式发布,Rust 高性能云原生时序数据库

时间:2023-03-13 17:19来源:linux.it.net.cn 作者:IT
CeresDB 是一款高性能、分布式的云原生时序数据库,采用 Rust 编写。其开发团队近日宣布:经过近一年的开源研发工作,时序数据库 CeresDB 1.0 正式发布,达到生产可用标准。

CeresDB 1.0 官方中文文档:https://docs.ceresdb.io/cn/

CeresDB 1.0 核心特性介绍
存储引擎

支持列式混合存储

高效 XOR 过滤器

云原生分布式

实现了计算存储分离(支持 OSS 作为数据存储,WAL 实现支持 OBKV、Kafka)

支持 HASH 分区表

部署与运维

支持单机部署

支持分布式集群部署

支持 Prometheus + Grafana 搭建自监控

读写协议

支持 SQL 查询与写入

实现了 CeresDB 内置高性能读写协议,提供多语言 SDK

支持 Prometheus,可以作为 Prometheus 的 remote storage 进行使用

多语言读写 SDK

实现了四种语言的客户端 SDK:Java、Python、Go、Rust
CeresDB 架构介绍
CeresDB 是一个时序数据库,与经典时序数据库相比,CeresDB 的目标是能够同时处理时序型和分析型两种模式的数据,并提供高效的读写。

在经典的时序数据库中,Tag 列(InfluxDB 称之为 Tag,Prometheus 称之为 Label)通常会对其生成倒排索引,但在实际使用中,Tag 的基数在不同的场景中是不一样的 ———— 在某些场景下,Tag 的基数非常高(这种场景下的数据,我们称之为分析型数据),而基于倒排索引的读写要为此付出很高的代价。而另一方面,分析型数据库常用的扫描 + 剪枝方法,可以比较高效地处理这样的分析型数据。

因此 CeresDB 的基本设计理念是采用混合存储格式和相应的查询方法,从而达到能够同时高效处理时序型数据和分析型数据。

下图展示了 CeresDB 单机版本的架构

┌──────────────────────────────────────────┐
│       RPC Layer (HTTP/gRPC/MySQL)        │
└──────────────────────────────────────────┘
┌──────────────────────────────────────────┐
│                 SQL Layer                │
│ ┌─────────────────┐  ┌─────────────────┐ │
│ │     Parser      │  │     Planner     │ │
│ └─────────────────┘  └─────────────────┘ │
└──────────────────────────────────────────┘
┌───────────────────┐  ┌───────────────────┐
│    Interpreter    │  │      Catalog      │
└───────────────────┘  └───────────────────┘
┌──────────────────────────────────────────┐
│               Query Engine               │
│ ┌─────────────────┐  ┌─────────────────┐ │
│ │    Optimizer    │  │    Executor     │ │
│ └─────────────────┘  └─────────────────┘ │
└──────────────────────────────────────────┘
┌──────────────────────────────────────────┐
│         Pluggable Table Engine           │
│  ┌────────────────────────────────────┐  │
│  │              Analytic              │  │
│  │┌────────────────┐┌────────────────┐│  │
│  ││      Wal       ││    Memtable    ││  │
│  │└────────────────┘└────────────────┘│  │
│  │┌────────────────┐┌────────────────┐│  │
│  ││     Flush      ││   Compaction   ││  │
│  │└────────────────┘└────────────────┘│  │
│  │┌────────────────┐┌────────────────┐│  │
│  ││    Manifest    ││  Object Store  ││  │
│  │└────────────────┘└────────────────┘│  │
│  └────────────────────────────────────┘  │
│  ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─   │
│           Another Table Engine        │  │
│  └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─   │
└──────────────────────────────────────────┘
性能优化与实验结果
CeresDB 组合使用了列式混合存储、数据分区、剪枝、高效扫描等技术,解决海量时间线(high cardinality)下写入查询性能变差的问题。

写入优化

CeresDB 采用类 LSM(Log-structured merge-tree)写入模型,无需在写入时处理复杂的倒排索引,因此写入性能上较好。

查询优化

主要采用以下技术手段提高查询性能:

剪枝:

min/max 剪枝:构建代价比较低,在特定场景,性能较好

XOR 过滤器:提高对 parquet 文件中的 row group 的筛选精度

高效扫描:

多个 SST 间并发:同时扫描多个 SST 文件

单个 SST 内部并发:支持 Parquet 层并行拉取多个 row group

合并小 IO:针对 OSS 上的文件,合并小 IO 请求,提高拉取效率

本地 cache:缓存 OSS 拉取文件,支持内存和磁盘缓存

性能测试结果

采用 TSBS 进行性能测试。压测参数如下:

10 个 Tag

10 个 Field

时间线(Tags 组合数)100w 量级

压测机器配置:24c90g

InfluxDB 版本:1.8.5

CeresDB 版本:1.0.0

写入性能对比

InfluxDB 写入性能随着时间下降较多。CeresDB 在写入稳定后,写入速率趋于平稳,并且总体写入性能表现为 InfluxDB 的 1.5 倍以上(一段时间后可达 2 倍以上差距)

下图中,单行 row 包含 10 个 Field。



上图为 Influxdb,下图为 CeresDB

查询性能对比

低筛选度条件(条件:os=Ubuntu15.10),CeresDB 比 InfluxDB 快 26 倍,具体数据如下:

CeresDB 查询耗时:15s

InfluxDB 查询耗时:6m43s

高筛选度条件(命中的数据较少,条件:hostname=[8 个],此时理论上传统倒排索引会更有效),这是 InfluxDB 更有优势的场景,此时在预热完成条件下,CeresDB 比 InfluxDB 慢 5 倍。

CeresDB:85ms

InfluxDB:15ms

2023 年 roadmap
开发团队表示,2023 年,在 CeresDB 1.0 发布之后,他们大部分工作将聚焦在性能、分布式与周边生态方面的工作。尤其周边生态的对接支持工作,希望能让各种不同的用户更加简单的用上 CeresDB:

周边生态

生态兼容,包括 PromQL、InfluxdbQL、OpenTSDB 等常用时序数据库协议兼容

运维工具支持,包括 k8s 支持、CeresDB 运维系统、自监控等

开发者工具,包括数据导入导出等

性能

探索新的存储格式

增强不同类型索引,强化 CeresDB 在不同工作负载下的表现

分布式

自动负载均衡

提高可用性、可靠性



(责任编辑:IT)
------分隔线----------------------------
栏目列表
推荐内容