Hadoop:The Definitive Guid 总结 Chapter 5 MapReduce应用开发 (R1)
时间:2014-12-30 23:38 来源:linux.it.net.cn 作者:IT
用MapReduce来编写程序,有几个主要的特定流程,首先写map函数和reduce函数,最好使用单元测试来确保函数的运行符合预期,然后,写一个驱动程序来运行作业,要看这个驱动程序是否可以运行,之后利用本地IDE调试,修改程序
实际上权威指南的一些配置已经过时 所以这里很多地方不做介绍
1.配置API
Hadoop拥有很多xml配置文件,格式遵从一般xml的要求 见实例
<!--Example:5-1. A simple configuration file, configuration-1.xml-->
<?xml version="1.0"?>
<configuration>
<property> <name>color</name> <value>yellow</value> <description>Color</description> </property>
<property> <name>size</name> <value>10</value> <description>Size</description> </property>
<property> <name>weight</name> <value>heavy</value> <final>true</final> <description>Weight</description> </property>
<property> <name>size-weight</name> <value>${size},${weight}</value> <description>Size and weight</description> </property>
</configuration>
访问属性的方法:
Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
assertThat(conf.get("color"), is("yellow"));
assertThat(conf.getInt("size", 0), is(10));
assertThat(conf.get("breadth", "wide"), is("wide"));
Hadoop允许多个配置文件进行合并:
<!--Example 5-2. A second configuration file, configuration-2.xml -->
<?xml version="1.0"?>
<configuration>
<property> <name>size</name> <value>12</value> </property>
<property> <name>weight</name> <value>light</value> </property>
</configuration>
源文件按顺序填到Configuration:
Configuration conf = new Configuration();
conf.addResource("configuration-1.xml");
conf.addResource("configuration-2.xml");
后来添加到源文件的属性会覆盖之前定义的属性,另外在上面的配置文件中,如果覆盖设置fina为true的property,则会出现配置错误,标记final为true的属性说明不希望客户端更改这个属性
关于可变的扩展:配置属性可以用其他属性或系统属性进行定义,而且系统属性的优先级高于源文件中定义的属性:
System.setProperty("size", "14");
assertThat(conf.get("size-weight"), is("14,heavy"));
该特性用于使用JVM参数-Dproperty=value来覆盖命令方式下的属性
2.配置开发环境
1).配置管理
权威指南给出了示例,实际上hadoop官方网站更具有权威性 如欲了解Hadoop2.0的配置参考示例请见:http://hadoop.apache.org/common/docs/r2.0.0-alpha/
2).辅助类GenericOptionsParser, Tool和ToolRunner
Hadoop提供了辅助类,GenericOptionsParser:用来解释常用的Hadoop命令选项,但是一般更常用的方式:实现Tool接口,通过ToolsRunner来运行程序,ToolRunner内部调用GenericOptionsParser
Tool实现示例用于打印一个Configuration对象的属性:
public interface Tool extends Configurable { int run(String[] args) throws Exception;
}
public class ConfigurationPrinter extends Configured implements Tool { static {
Configuration.addDefaultResource("hdfs-default.xml");
Configuration.addDefaultResource("hdfs-site.xml");
Configuration.addDefaultResource("mapred-default.xml");
Configuration.addDefaultResource("mapred-site.xml");
}
@Override public int run(String[] args) throws Exception {
Configuration conf = getConf(); for (Entry<String, String> entry : conf) {
System.out.printf("%s=%s\n", entry.getKey(), entry.getValue());
} return 0;
} public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new ConfigurationPrinter(), args);
System.exit(exitCode);
}
}
在Hadoop中 -D选项可以把默认属性放入配置文件中,然后在需要时,用-D选项来覆盖它们,注意的是,这个不同于JVM系统属性设置Java命令 -Dproperty=value,JVM中的-D与属性没有空格
下面给出GenericOptionsParser选项和ToolRunner选项
3).编写单元测试
以下程序可以在IDE Eclipse中运行
mapper的测试实例:
import java.io.IOException;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.junit.*; public class MaxTemperatureMapperTest {
@Test public void processesValidRecord() throws IOException, InterruptedException {
Text value = new Text( "0043011990999991950051518004+68750+023550FM-12+0382" + // Year ^^^^ "99999V0203201N00261220001CN9999999N9-00111+99999999999"); // Temperature ^^^^^ new MapDriver<LongWritable, Text, Text, IntWritable>()
.withMapper(new MaxTemperatureMapper()).withInputValue(value)
.withOutput(new Text("1950"), new IntWritable(-11)).runTest();
}
}
最终的Mapper函数:
public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String year = line.substring(15, 19);
String temp = line.substring(87, 92); if (!missing(temp)) { int airTemperature = Integer.parseInt(temp);
context.write(new Text(year), new IntWritable(airTemperature));
}
} private boolean missing(String temp) { return temp.equals("+9999");
}
}
reducer的测试函数
import java.io.IOException; import org.apache.hadoop.io.*; import org.apache.hadoop.mrunit.mapreduce.MapDriver; import org.junit.*; public class MaxTemperatureMapperTest {
@Test public void returnsMaximumIntegerInValues() throws IOException,
InterruptedException { new ReduceDriver<Text, IntWritable, Text, IntWritable>()
.withReducer(new MaxTemperatureReducer())
.withInputKey(new Text("1950"))
.withInputValues(
Arrays.asList(new IntWritable(10), new IntWritable(5)))
.withOutput(new Text("1950"), new IntWritable(10)).runTest();
}
}
最后的reducer函数实现
public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
@Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) {
maxValue = Math.max(maxValue, value.get());
}
context.write(key, new IntWritable(maxValue));
}
}
3.本地运行测试数据
1).本地运行Job
Job驱动程序查找最高气温
public class MaxTemperatureDriver extends Configured implements Tool {
@Override public int run(String[] args) throws Exception { if (args.length != 2) {
System.err.printf("Usage: %s [generic options] <input> <output>\n",
getClass().getSimpleName());
ToolRunner.printGenericCommandUsage(System.err); return -1;
}
Job job = new Job(getConf(), "Max temperature");
job.setJarByClass(getClass());
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); return job.waitForCompletion(true) ? 0 : 1;
} public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args);
System.exit(exitCode);
}
}
命令运行驱动程序:
% mvn compile
% export HADOOP_CLASSPATH=target/classes/
% hadoop v2.MaxTemperatureDriver -conf conf/hadoop-local.xml input/ncdc/micro output
这里给出权威指南上的parse函数
public class NcdcRecordParser { private static final int MISSING_TEMPERATURE = 9999; private String year; private int airTemperature; private String quality; public void parse(String record) {
year = record.substring(15, 19);
String airTemperatureString; // Remove leading plus sign as parseInt doesn't like them if (record.charAt(87) == '+') {
airTemperatureString = record.substring(88, 92);
} else {
airTemperatureString = record.substring(87, 92);
}
airTemperature = Integer.parseInt(airTemperatureString);
quality = record.substring(92, 93);
} public void parse(Text record) {
parse(record.toString());
} public boolean isValidTemperature() { return airTemperature != MISSING_TEMPERATURE && quality.matches("[01459]");
} public String getYear() { return year;
} public int getAirTemperature() { return airTemperature;
}
}
利用上面的parser函数mapper函数可以写成下面形式
public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private NcdcRecordParser parser = new NcdcRecordParser();
@Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
parser.parse(value); if (parser.isValidTemperature()) {
context.write(new Text(parser.getYear()), new IntWritable(parser.getAirTemperature()));
}
}
}
2).测试驱动程序
需要关注的是 在下面程序中,checkOutput()方法被调用用以逐行对比实际输出与与其输出
@Test public void test() throws Exception {
Configuration conf = new Configuration();
conf.set("fs.default.name", "file:///");
conf.set("mapred.job.tracker", "local");
Path input = new Path("input/ncdc/micro");
Path output = new Path("output");
FileSystem fs = FileSystem.getLocal(conf);
fs.delete(output, true); // delete old output MaxTemperatureDriver driver = new MaxTemperatureDriver();
driver.setConf(conf); int exitCode = driver.run(new String[] {
input.toString(), output.toString() });
assertThat(exitCode, is(0));
checkOutput(conf, output);
}
4.集群上的运行
以下会列出一些命令 但是最好还是参照Hadoop官方网站为佳
1).打包
新版的Hadoop 2.0用mvn对Hadoop进行打包 其实也可以用Eclipse打包 两者方法在实际中都可以,mav命令:
% mvn package -DskipTests
配置打包过程中注意对HADOOP_CLASSPATH的设置,和依赖包的导入等 详见上面 Hadoop官方网站
2).Job的启动
Job类中的waitForCompletion()启动Job并轮询检查Job的运行进程
3)Job、Task和Task Attempt ID
Job的ID一般来源本地时间 例如:job_200904110811_0002(0002,Job的ID从1开始)
Task隶属于Job 所以Task的ID是以Job的ID为前缀,然后加上一个后缀,表示Job下的哪一个Task,例如:task_200904110811_0002_m_000003(000003,Task的ID从0开始)
Task Attempt是由Task的生成 自然Task AttemptID的前缀为Task的ID,之后加上后缀,后面表示表示失败后尝试的次数,例如:attempt_200904110811_0002_m_000003_0(0,Task Attempt的ID从0开始)
3).MapReduce的Web页面
因为Hadoop经过改版一些web的页面的URL也不断变化,所以这个需要参照Hadoop的网站为佳
4).获取结果
hadoop fs 命令中的-getmerge,可以得到源模式目录中的所有文件,并在本地系统上将它们合并成一个文件,实例如下:
% hadoop fs -getmerge max-temp max-temp-local % sort max-temp-local | tail 1991 607
1992 605
1993 567
1994 568
1995 567
1996 561
1997 565
1998 568
1999 568
2000 558
5).作业调试
可以利用Hadoop输出的log文件和一些其他信息(例如计数器等工具),进行调试,并用web页面查看调试后的结果
关于远程调试器:可以用JVM选项,Java profiling够工具,IsolationRunner工具还有,如果为了监视失败作业的情况,可以设置keep.failed.task.files为true
5.作业调优
作业调优表:
对Job程序的修改可以启用HPROF工具,另外也有其他分析工具帮助调优,例如:DistributedCache等等
6.MapReduce的工作流
1).将问题分解成MapReduce作业
需要注意的是:对于十分复杂的问题 可以使用Hadoop自带ChainMapper类库将它们连接成一个Mapper,结合使用ChainReducer,这样就可以在一个MapReduce作业中运行一系列的mapper,再运行一个reducer和另一个mapper链。
2).运行独立的Job
管理作业的执行顺序。其中主要考虑的是:是否有一个线性的作业链或一个更复杂的作业有向无环图(DAG)
转载地址:http://www.cnblogs.com/biyeymyhjob/archive/2012/08/10/2631654.html
(责任编辑:IT)
用MapReduce来编写程序,有几个主要的特定流程,首先写map函数和reduce函数,最好使用单元测试来确保函数的运行符合预期,然后,写一个驱动程序来运行作业,要看这个驱动程序是否可以运行,之后利用本地IDE调试,修改程序 实际上权威指南的一些配置已经过时 所以这里很多地方不做介绍
1.配置API Hadoop拥有很多xml配置文件,格式遵从一般xml的要求 见实例 <!--Example:5-1. A simple configuration file, configuration-1.xml--> <?xml version="1.0"?> <configuration> <property> <name>color</name> <value>yellow</value> <description>Color</description> </property> <property> <name>size</name> <value>10</value> <description>Size</description> </property> <property> <name>weight</name> <value>heavy</value> <final>true</final> <description>Weight</description> </property> <property> <name>size-weight</name> <value>${size},${weight}</value> <description>Size and weight</description> </property> </configuration> 访问属性的方法: Configuration conf = new Configuration(); conf.addResource("configuration-1.xml"); assertThat(conf.get("color"), is("yellow")); assertThat(conf.getInt("size", 0), is(10)); assertThat(conf.get("breadth", "wide"), is("wide"));
<!--Example 5-2. A second configuration file, configuration-2.xml --> <?xml version="1.0"?> <configuration> <property> <name>size</name> <value>12</value> </property> <property> <name>weight</name> <value>light</value> </property> </configuration> 源文件按顺序填到Configuration: Configuration conf = new Configuration(); conf.addResource("configuration-1.xml"); conf.addResource("configuration-2.xml"); 后来添加到源文件的属性会覆盖之前定义的属性,另外在上面的配置文件中,如果覆盖设置fina为true的property,则会出现配置错误,标记final为true的属性说明不希望客户端更改这个属性 关于可变的扩展:配置属性可以用其他属性或系统属性进行定义,而且系统属性的优先级高于源文件中定义的属性: System.setProperty("size", "14"); assertThat(conf.get("size-weight"), is("14,heavy")); 该特性用于使用JVM参数-Dproperty=value来覆盖命令方式下的属性
2.配置开发环境 1).配置管理 权威指南给出了示例,实际上hadoop官方网站更具有权威性 如欲了解Hadoop2.0的配置参考示例请见:http://hadoop.apache.org/common/docs/r2.0.0-alpha/ 2).辅助类GenericOptionsParser, Tool和ToolRunner Hadoop提供了辅助类,GenericOptionsParser:用来解释常用的Hadoop命令选项,但是一般更常用的方式:实现Tool接口,通过ToolsRunner来运行程序,ToolRunner内部调用GenericOptionsParser Tool实现示例用于打印一个Configuration对象的属性: public interface Tool extends Configurable { int run(String[] args) throws Exception; } public class ConfigurationPrinter extends Configured implements Tool { static { Configuration.addDefaultResource("hdfs-default.xml"); Configuration.addDefaultResource("hdfs-site.xml"); Configuration.addDefaultResource("mapred-default.xml"); Configuration.addDefaultResource("mapred-site.xml"); } @Override public int run(String[] args) throws Exception { Configuration conf = getConf(); for (Entry<String, String> entry : conf) { System.out.printf("%s=%s\n", entry.getKey(), entry.getValue()); } return 0; } public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new ConfigurationPrinter(), args); System.exit(exitCode); } }
下面给出GenericOptionsParser选项和ToolRunner选项
3).编写单元测试 以下程序可以在IDE Eclipse中运行 mapper的测试实例: import java.io.IOException; import org.apache.hadoop.io.*; import org.apache.hadoop.mrunit.mapreduce.MapDriver; import org.junit.*; public class MaxTemperatureMapperTest { @Test public void processesValidRecord() throws IOException, InterruptedException { Text value = new Text( "0043011990999991950051518004+68750+023550FM-12+0382" + // Year ^^^^ "99999V0203201N00261220001CN9999999N9-00111+99999999999"); // Temperature ^^^^^ new MapDriver<LongWritable, Text, Text, IntWritable>() .withMapper(new MaxTemperatureMapper()).withInputValue(value) .withOutput(new Text("1950"), new IntWritable(-11)).runTest(); } }
public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); String year = line.substring(15, 19); String temp = line.substring(87, 92); if (!missing(temp)) { int airTemperature = Integer.parseInt(temp); context.write(new Text(year), new IntWritable(airTemperature)); } } private boolean missing(String temp) { return temp.equals("+9999"); } }
import java.io.IOException; import org.apache.hadoop.io.*; import org.apache.hadoop.mrunit.mapreduce.MapDriver; import org.junit.*; public class MaxTemperatureMapperTest { @Test public void returnsMaximumIntegerInValues() throws IOException, InterruptedException { new ReduceDriver<Text, IntWritable, Text, IntWritable>() .withReducer(new MaxTemperatureReducer()) .withInputKey(new Text("1950")) .withInputValues( Arrays.asList(new IntWritable(10), new IntWritable(5))) .withOutput(new Text("1950"), new IntWritable(10)).runTest(); } }
最后的reducer函数实现 public class MaxTemperatureReducer extends Reducer<Text, IntWritable, Text, IntWritable> { @Override public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int maxValue = Integer.MIN_VALUE; for (IntWritable value : values) { maxValue = Math.max(maxValue, value.get()); } context.write(key, new IntWritable(maxValue)); } }
3.本地运行测试数据 1).本地运行Job Job驱动程序查找最高气温 public class MaxTemperatureDriver extends Configured implements Tool { @Override public int run(String[] args) throws Exception { if (args.length != 2) { System.err.printf("Usage: %s [generic options] <input> <output>\n", getClass().getSimpleName()); ToolRunner.printGenericCommandUsage(System.err); return -1; } Job job = new Job(getConf(), "Max temperature"); job.setJarByClass(getClass()); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.setMapperClass(MaxTemperatureMapper.class); job.setCombinerClass(MaxTemperatureReducer.class); job.setReducerClass(MaxTemperatureReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); return job.waitForCompletion(true) ? 0 : 1; } public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new MaxTemperatureDriver(), args); System.exit(exitCode); } } 命令运行驱动程序:
这里给出权威指南上的parse函数 public class NcdcRecordParser { private static final int MISSING_TEMPERATURE = 9999; private String year; private int airTemperature; private String quality; public void parse(String record) { year = record.substring(15, 19); String airTemperatureString; // Remove leading plus sign as parseInt doesn't like them if (record.charAt(87) == '+') { airTemperatureString = record.substring(88, 92); } else { airTemperatureString = record.substring(87, 92); } airTemperature = Integer.parseInt(airTemperatureString); quality = record.substring(92, 93); } public void parse(Text record) { parse(record.toString()); } public boolean isValidTemperature() { return airTemperature != MISSING_TEMPERATURE && quality.matches("[01459]"); } public String getYear() { return year; } public int getAirTemperature() { return airTemperature; } } 利用上面的parser函数mapper函数可以写成下面形式 public class MaxTemperatureMapper extends Mapper<LongWritable, Text, Text, IntWritable> { private NcdcRecordParser parser = new NcdcRecordParser(); @Override public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { parser.parse(value); if (parser.isValidTemperature()) { context.write(new Text(parser.getYear()), new IntWritable(parser.getAirTemperature())); } } }
需要关注的是 在下面程序中,checkOutput()方法被调用用以逐行对比实际输出与与其输出 @Test public void test() throws Exception { Configuration conf = new Configuration(); conf.set("fs.default.name", "file:///"); conf.set("mapred.job.tracker", "local"); Path input = new Path("input/ncdc/micro"); Path output = new Path("output"); FileSystem fs = FileSystem.getLocal(conf); fs.delete(output, true); // delete old output MaxTemperatureDriver driver = new MaxTemperatureDriver(); driver.setConf(conf); int exitCode = driver.run(new String[] { input.toString(), output.toString() }); assertThat(exitCode, is(0)); checkOutput(conf, output); }
4.集群上的运行 以下会列出一些命令 但是最好还是参照Hadoop官方网站为佳 1).打包 新版的Hadoop 2.0用mvn对Hadoop进行打包 其实也可以用Eclipse打包 两者方法在实际中都可以,mav命令:
配置打包过程中注意对HADOOP_CLASSPATH的设置,和依赖包的导入等 详见上面 Hadoop官方网站
2).Job的启动 Job类中的waitForCompletion()启动Job并轮询检查Job的运行进程
3)Job、Task和Task Attempt ID Job的ID一般来源本地时间 例如:job_200904110811_0002(0002,Job的ID从1开始) Task隶属于Job 所以Task的ID是以Job的ID为前缀,然后加上一个后缀,表示Job下的哪一个Task,例如:task_200904110811_0002_m_000003(000003,Task的ID从0开始) Task Attempt是由Task的生成 自然Task AttemptID的前缀为Task的ID,之后加上后缀,后面表示表示失败后尝试的次数,例如:attempt_200904110811_0002_m_000003_0(0,Task Attempt的ID从0开始)
3).MapReduce的Web页面 因为Hadoop经过改版一些web的页面的URL也不断变化,所以这个需要参照Hadoop的网站为佳
4).获取结果 hadoop fs 命令中的-getmerge,可以得到源模式目录中的所有文件,并在本地系统上将它们合并成一个文件,实例如下: % hadoop fs -getmerge max-temp max-temp-local % sort max-temp-local | tail 1991 607 1992 605 1993 567 1994 568 1995 567 1996 561 1997 565 1998 568 1999 568 2000 558
5).作业调试 可以利用Hadoop输出的log文件和一些其他信息(例如计数器等工具),进行调试,并用web页面查看调试后的结果 关于远程调试器:可以用JVM选项,Java profiling够工具,IsolationRunner工具还有,如果为了监视失败作业的情况,可以设置keep.failed.task.files为true
5.作业调优 作业调优表:
对Job程序的修改可以启用HPROF工具,另外也有其他分析工具帮助调优,例如:DistributedCache等等
6.MapReduce的工作流 1).将问题分解成MapReduce作业 需要注意的是:对于十分复杂的问题 可以使用Hadoop自带ChainMapper类库将它们连接成一个Mapper,结合使用ChainReducer,这样就可以在一个MapReduce作业中运行一系列的mapper,再运行一个reducer和另一个mapper链。
2).运行独立的Job
管理作业的执行顺序。其中主要考虑的是:是否有一个线性的作业链或一个更复杂的作业有向无环图(DAG) (责任编辑:IT) |