> Linux集群 > Hadoop >

MapReduce:默认Counter的含义

MapReduce Counter为提供我们一个窗口:观察MapReduce job运行期的各种细节数据。今年三月份期间,我曾经专注于MapReduce性能调优工作,是否优化的绝大多评估都是基于这些Counter的数值表现。MapReduce自带了许多默认Counter,可能有些朋友对它们有些疑问,现在我分析下这些默认Counter的含义,方便大家观察job结果。  

    我的分析是基于Hadoop0.21,我也看过Hadoop其它版本的Counter展现,细节大同小异,如果有差异的地方,以事实版本为主。  

    Counter有"组group"的概念,用于表示逻辑上相同范围的所有数值。MapReduce job提供的默认Counter分为五个组,下面逐一介绍。这里也拿我的一份测试数据来做详细比对,它们会以表格的形式出现在各组描述中。  

FileInputFormatCounters   
    这个group表示map task读取文件内容(总输入数据)的统计  
    
  Counter Map Reduce Total
FileInputFormatCounters BYTES_READ 1,109,990,596 0 1,109,990,596

     BYTES_READ   
         Map task的所有输入数据(字节),等于各个map task的map方法传入的所有value值字节之和。  


FileSystemCounters   
    MapReduce job执行所依赖的数据来自于不同的文件系统,这个group表示job与文件系统交互的读写统计  
  
  Counter Map Reduce Total
FileSystemCounters FILE_BYTES_READ 0 1,544,520,838 1,544,520,838
  FILE_BYTES_WRITTEN 1,544,537,310 1,544,520,838 3,089,058,148
  HDFS_BYTES_READ 1,110,269,508 0 1,110,269,508
  HDFS_BYTES_WRITTEN 0 827,982,518 827,982,518
   
     FILE_BYTES_READ 
        job读取本地文件系统的文件字节数。假定我们当前map的输入数据都来自于HDFS,那么在map阶段,这个数据应该是0。但reduce在执行前,它的输入数据是经过shuffle的merge后存储在reduce端本地磁盘中,所以这个数据就是所有reduce的总输入字节数。  

     FILE_BYTES_WRITTEN   
        map的中间结果都会spill到本地磁盘中,在map执行完后,形成最终的spill文件。所以map端这里的数据就表示map task往本地磁盘中总共写了多少字节。与map端相对应的是,reduce端在shuffle时,会不断地拉取map端的中间结果,然后做merge并不断spill到自己的本地磁盘中。最终形成一个单独文件,这个文件就是reduce的输入文件。  

     HDFS_BYTES_READ   
        整个job执行过程中,只有map端运行时,才从HDFS读取数据,这些数据不限于源文件内容,还包括所有map的split元数据。所以这个值应该比FileInputFormatCounters.BYTES_READ 要略大些。  

     HDFS_BYTES_WRITTEN   
        Reduce的最终结果都会写入HDFS,就是一个job执行结果的总量。  


Shuffle Errors   
    这组内描述Shuffle过程中的各种错误情况发生次数,基本定位于Shuffle阶段copy线程抓取map端中间数据时的各种错误。  
  Counter Map Reduce Total
Shuffle Errors BAD_ID 0 0 0
  CONNECTION 0 0 0
  IO_ERROR 0 0 0
  WRONG_LENGTH 0 0 0
  WRONG_MAP 0 0 0
  WRONG_REDUCE 0 0 0

     BAD_ID   
        每个map都有一个ID,如attempt_201109020150_0254_m_000000_0,如果reduce的copy线程抓取过来的元数据中这个ID不是标准格式,那么此Counter增加  

     CONNECTION   
        表示copy线程建立到map端的连接有误  

     IO_ERROR   
        Reduce的copy线程如果在抓取map端数据时出现IOException,那么这个值相应增加  

     WRONG_LENGTH   
        map端的那个中间结果是有压缩好的有格式数据,所有它有两个length信息:源数据大小与压缩后数据大小。如果这两个length信息传输的有误(负值),那么此Counter增加  

     WRONG_MAP   
        每个copy线程当然是有目的:为某个reduce抓取某些map的中间结果,如果当前抓取的map数据不是copy线程之前定义好的map,那么就表示把数据拉错了  

     WRONG_REDUCE   
        与上面描述一致,如果抓取的数据表示它不是为此reduce而准备的,那还是拉错数据了。  


Job Counters   
    这个group描述与job调度相关的统计  
  Counter Map Reduce Total
Job Counters Data-local map tasks 0 0 67
  FALLOW_SLOTS_MILLIS_MAPS 0 0 0
  FALLOW_SLOTS_MILLIS_REDUCES 0 0 0
  SLOTS_MILLIS_MAPS 0 0 1,210,936
  SLOTS_MILLIS_REDUCES 0 0 1,628,224
  Launched map tasks 0 0 67
  Launched reduce tasks 0 0 8


     Data-local map tasks   
        Job在被调度时,如果启动了一个data-local(源文件的幅本在执行map task的taskTracker本地)  

     FALLOW_SLOTS_MILLIS_MAPS   
        当前job为某些map task的执行保留了slot,总共保留的时间是多少  

     FALLOW_SLOTS_MILLIS_REDUCES   
        与上面类似  

     SLOTS_MILLIS_MAPS   
        所有map task占用slot的总时间,包含执行时间和创建/销毁子JVM的时间  

     SLOTS_MILLIS_REDUCES   
        与上面类似  

     Launched map tasks   
        此job启动了多少个map task  

     Launched reduce tasks   
        此job启动了多少个reduce task  


Map-Reduce Framework   
    这个Counter group包含了相当多地job执行细节数据。这里需要有个概念认识是:一般情况下,record就表示一行数据,而相对地byte表示这行数据的大小是多少,这里的group表示经过reduce merge后像这样的输入形式{“aaa”, [5, 8, 2, …]}。  
  Counter Map Reduce Total
Map-Reduce Framework Combine input records 200,000,000 0 200,000,000
  Combine output records 117,838,546 0 117,838,546
  Failed Shuffles 0 0 0
  GC time elapsed (ms) 23,472 46,588 70,060
  Map input records 10,000,000 0 10,000,000
  Map output bytes 1,899,990,596 0 1,899,990,596
  Map output records 200,000,000 0 200,000,000
  Merged Map outputs 0 536 536
  Reduce input groups 0 84,879,137 84,879,137
  Reduce input records 0 117,838,546 117,838,546
  Reduce output records 0 84,879,137 84,879,137
  Reduce shuffle bytes 0 1,544,523,910 1,544,523,910
  Shuffled Maps 0 536 536
  Spilled Records 117,838,546 117,838,546 235,677,092
  SPLIT_RAW_BYTES 8,576 0 8,576


     Combine input records   
        Combiner是为了减少尽量减少需要拉取和移动的数据,所以combine输入条数与map的输出条数是一致的。  

     Combine output records   
        经过Combiner后,相同key的数据经过压缩,在map端自己解决了很多重复数据,表示最终在map端中间文件中的所有条目数  

     Failed Shuffles   
        copy线程在抓取map端中间数据时,如果因为网络连接异常或是IO异常,所引起的shuffle错误次数  

     GC time elapsed(ms)   
        通过JMX获取到执行map与reduce的子JVM总共的GC时间消耗  

     Map input records   
        所有map task从HDFS读取的文件总行数  

     Map output records   
        map task的直接输出record是多少,就是在map方法中调用context.write的次数,也就是未经过Combine时的原生输出条数  

     Map output bytes   
        Map的输出结果key/value都会被序列化到内存缓冲区中,所以这里的bytes指序列化后的最终字节之和  

     Merged Map outputs   
        记录着shuffle过程中总共经历了多少次merge动作  

     Reduce input groups   
        Reduce总共读取了多少个这样的groups  

     Reduce input records   
        如果有Combiner的话,那么这里的数值就等于map端Combiner运算后的最后条数,如果没有,那么就应该等于map的输出条数  

     Reduce output records   
        所有reduce执行后输出的总条目数  

     Reduce shuffle bytes   
        Reduce端的copy线程总共从map端抓取了多少的中间数据,表示各个map task最终的中间文件总和  

     Shuffled Maps   
         每个reduce几乎都得从所有map端拉取数据,每个copy线程拉取成功一个map的数据,那么增1,所以它的总数基本等于 reduce number * map number  

     Spilled Records   
        spill过程在map和reduce端都会发生,这里统计在总共从内存往磁盘中spill了多少条数据  

     SPLIT_RAW_BYTES   
        与map task 的split相关的数据都会保存于HDFS中,而在保存时元数据也相应地存储着数据是以怎样的压缩方式放入的,它的具体类型是什么,这些额外的数据是MapReduce框架加入的,与job无关,这里记录的大小就是表示额外信息的字节大小 


(责任编辑:IT)