来自:http://f.dataguru.cn/thread-271645-1-1.html
简介
本文主要介绍下面4个方面
1.为什么要使用CombineFileInputFormat
2.CombineFileInputFormat实现原理
3.怎样使用CombineFileInputFormat
4.现存的问题
使用CombineFileInputFormat的目的
在开发MR的程序时,mapper的主要作用是对数据的收集。一般情况下,为了能让mapper更快的运行,我们会对文件进行split,以便多个mapper同时运行。在这种情况下,为了让程序更好更快的运行,我们需要控制mapper的个数。Mapper的个数主要由文件的大小及我们所设置的mapred.min.split.size以及blockSize所决定(详细参考:http://ai-longyu.iteye.com/blog/1566633)
上面所说的在我们使用TextInputFormat和分析单个文件时是没有问题的,基本上mapper的个数能够控制在我们所预期的范围内。但是当我们使用多个文件作为input的时候,mapper的个数就不再是我们所期望的那样了,因为TextInputFormat继承的是FileInputFormat,而FileInputFormat的split操作是只针对单个文件,对于多个文件,是将每个文件进行split,而不能做一些合并的操作(尤其是大量的小文件)。
你会想为什么不能进行合并呢,有没有实现合并的split呢?在这个时候,CombineFileInputFormat就闪亮登场了。这里所说的CombineFileInputFormat是由官方提供的,只要我们搞清楚了官方是怎么实现的,就能够自己也实现一个了。接下来将逐步分析CombineFileInputFormat的实现了。
CombineFileInputFormat实现步骤
这里插一句,官方的CombineFileInputFormat并不是线程安全的。
先申明一下,这里分析所采用的源码是apache的1.0.3,分析的在org.apache.hadoop.mapred.lib.CombineFileInputFormat而不是org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat,这里分析的旧API,而没有分析新的API
生成split的信息是由
-
public InputSplit[] getSplits(JobConf job, int numSplits)
Job参数:job的配置信息
numSplits参数:期望的mapper数目,在这里根本就没有使用
-
//每个DN的最小split大小
-
long minSizeNode = 0;
-
//同机架的最小split大小
-
long minSizeRack = 0;
-
//最大的split大小
-
long maxSize = 0;
这几个变量都可以从job的配置信息中获取
接下来就是获取input的路径列表,判断每个路径时候被Filter所允许,然后对允许的路径列表生成split信息列表,进入该类的核心方法
-
/**
-
* Return all the splits in the specified set of paths
-
*
-
* @param job Job的配置信息
-
* @param paths 输入源的路径列表
-
* @param maxSize 最大的split大小
-
* @param minSizeNode 每个DN最小的split大小
-
* @param minSizeRack 每个rack最小的split大小
-
* @param splits split信息列表
-
* @throws IOException
-
*/
-
private void getMoreSplits(JobConf job, Path[] paths,
-
long maxSize, long minSizeNode, long minSizeRack,
-
List<CombineFileSplit> splits)
生成每个文件的OneFileInfo对象
-
// populate all the blocks for all files
-
long totLength = 0;
-
for (int i = 0; i < paths.length; i++) {
-
//构建每个input文件的信息,并将文件中的每个
-
//block信息收集到rackToBlocks、blockToNodes、nodeToBlocks中
-
files = new OneFileInfo(paths, job,
-
rackToBlocks, blockToNodes, nodeToBlocks);
-
//增加所有文件的大小
-
totLength += files.getLength();
-
}
在下面就开始真正的生成Split信息了
第一次:将同DN上的所有block生成Split,生成方式:
1.循环nodeToBlocks,获得每个DN上有哪些block
2.循环这些block列表
3.将block从blockToNodes中移除,避免同一个block被包含在多个split中
4.将该block添加到一个有效block的列表中,这个列表主要是保留哪些block已经从blockToNodes中被移除了,方便后面恢复到blockToNodes中
5.向临时变量curSplitSize增加block的大小
6.判断curSplitSize是否已经超过了设置的maxSize
a) 如果超过,执行并添加split信息,并重置curSplitSize和validBlocks
b) 没有超过,继续循环block列表,跳到第2步
7.当前DN上的block列表循环完成,判断剩余的block是否允许被split(剩下的block大小之和是否大于每个DN的最小split大小)
a) 如果允许,执行并添加split信息
b) 如果不被允许,将这些剩余的block归还blockToNodes
8.重置
9.跳到步骤1
-
// process all nodes and create splits that are local
-
// to a node.
-
//创建同一个DN上的split
-
for (Iterator<Map.Entry<String,
-
List<OneBlockInfo>>> iter = nodeToBlocks.entrySet().iterator();
-
iter.hasNext() {
-
-
Map.Entry<String, List<OneBlockInfo>> one = iter.next();
-
nodes.add(one.getKey());
-
List<OneBlockInfo> blocksInNode = one.getValue();
-
-
// for each block, copy it into validBlocks. Delete it from
-
// blockToNodes so that the same block does not appear in
-
// two different splits.
-
for (OneBlockInfo oneblock : blocksInNode) {
-
if (blockToNodes.containsKey(oneblock)) {
-
validBlocks.add(oneblock);
-
blockToNodes.remove(oneblock);
-
curSplitSize += oneblock.length;
-
-
// if the accumulated split size exceeds the maximum, then
-
// create this split.
-
if (maxSize != 0 && curSplitSize >= maxSize) {
-
// create an input split and add it to the splits array
-
//创建这些block合并后的split,并将其split添加到split列表中
-
addCreatedSplit(job, splits, nodes, validBlocks);
-
//重置
-
curSplitSize = 0;
-
validBlocks.clear();
-
}
-
}
-
}
-
// if there were any blocks left over and their combined size is
-
// larger than minSplitNode, then combine them into one split.
-
// Otherwise add them back to the unprocessed pool. It is likely
-
// that they will be combined with other blocks from the same rack later on.
-
//其实这里的注释已经说的很清楚,我再按照我的理解说一下
-
/**
-
* 这里有几种情况:
-
* 1、在这个DN上还有没有被split的block,
-
* 而且这些block的大小大于了在一个DN上的split最小值(没有达到最大值),
-
* 将把这些block合并成一个split
-
* 2、剩余的block的大小还是没有达到,将剩余的这些block
-
* 归还给blockToNodes,等以后统一处理
-
*/
-
if (minSizeNode != 0 && curSplitSize >= minSizeNode) {
-
// create an input split and add it to the splits array
-
addCreatedSplit(job, splits, nodes, validBlocks);
-
} else {
-
for (OneBlockInfo oneblock : validBlocks) {
-
blockToNodes.put(oneblock, oneblock.hosts);
-
}
-
}
-
validBlocks.clear();
-
nodes.clear();
-
curSplitSize = 0;
-
}
第二次:对不再同一个DN上但是在同一个Rack上的block进行合并(只是之前还剩下的block)
-
// if blocks in a rack are below the specified minimum size, then keep them
-
// in 'overflow'. After the processing of all racks is complete, these overflow
-
// blocks will be combined into splits.
-
ArrayList<OneBlockInfo> overflowBlocks = new ArrayList<OneBlockInfo>();
-
ArrayList<String> racks = new ArrayList<String>();
-
-
// Process all racks over and over again until there is no more work to do.
-
//这里处理的就不再是同一个DN上的block
-
//同一个DN上的已经被处理过了(上面的代码),这里是一些
-
//还没有被处理的block
-
while (blockToNodes.size() > 0) {
-
-
// Create one split for this rack before moving over to the next rack.
-
// Come back to this rack after creating a single split for each of the
-
// remaining racks.
-
// Process one rack location at a time, Combine all possible blocks that
-
// reside on this rack as one split. (constrained by minimum and maximum
-
// split size).
-
-
// iterate over all racks
-
//创建同机架的split
-
for (Iterator<Map.Entry<String, List<OneBlockInfo>>> iter =
-
rackToBlocks.entrySet().iterator(); iter.hasNext() {
-
-
Map.Entry<String, List<OneBlockInfo>> one = iter.next();
-
racks.add(one.getKey());
-
List<OneBlockInfo> blocks = one.getValue();
-
-
// for each block, copy it into validBlocks. Delete it from
-
// blockToNodes so that the same block does not appear in
-
// two different splits.
-
boolean createdSplit = false;
-
for (OneBlockInfo oneblock : blocks) {
-
//这里很重要,现在的blockToNodes说明的是还有哪些block没有被split
-
if (blockToNodes.containsKey(oneblock)) {
-
validBlocks.add(oneblock);
-
blockToNodes.remove(oneblock);
-
curSplitSize += oneblock.length;
-
-
// if the accumulated split size exceeds the maximum, then
-
// create this split.
-
if (maxSize != 0 && curSplitSize >= maxSize) {
-
// create an input split and add it to the splits array
-
addCreatedSplit(job, splits, getHosts(racks), validBlocks);
-
createdSplit = true;
-
break;
-
}
-
}
-
}
-
-
// if we created a split, then just go to the next rack
-
if (createdSplit) {
-
curSplitSize = 0;
-
validBlocks.clear();
-
racks.clear();
-
continue;
-
}
-
-
//还有没有被split的block
-
//如果这些block的大小大于了同机架的最小split,
-
//则创建split
-
//否则,将这些block留到后面处理
-
if (!validBlocks.isEmpty()) {
-
if (minSizeRack != 0 && curSplitSize >= minSizeRack) {
-
// if there is a mimimum size specified, then create a single split
-
// otherwise, store these blocks into overflow data structure
-
addCreatedSplit(job, splits, getHosts(racks), validBlocks);
-
} else {
-
// There were a few blocks in this rack that remained to be processed.
-
// Keep them in 'overflow' block list. These will be combined later.
-
overflowBlocks.addAll(validBlocks);
-
}
-
}
-
curSplitSize = 0;
-
validBlocks.clear();
-
racks.clear();
-
}
-
}
最后,对于既不在同DN也不在同rack的block进行合并(经过前两步还剩下的block),这里源码就没有什么了,就不再贴了
源码总结:
合并,经过了3个步骤。同DN----》同rack不同DN-----》不同rack
将可以合并的block写到同一个split中
使用自定义的CombineFileInputFormat
MultiFileCombineInputFormat
-
package org.rollinkin.hadoop;
-
-
import java.io.IOException;
-
-
import org.apache.hadoop.io.LongWritable;
-
import org.apache.hadoop.io.Text;
-
import org.apache.hadoop.mapred.InputSplit;
-
import org.apache.hadoop.mapred.JobConf;
-
import org.apache.hadoop.mapred.RecordReader;
-
import org.apache.hadoop.mapred.Reporter;
-
import org.apache.hadoop.mapred.lib.CombineFileInputFormat;
-
import org.apache.hadoop.mapred.lib.CombineFileRecordReader;
-
import org.apache.hadoop.mapred.lib.CombineFileSplit;
-
-
/**
-
* 多文件合并split的输入format
-
*
-
* @author rollinkin
-
* @date 2012-10-29
-
* @version 1.0
-
* @since 1.0
-
*/
-
public class MultiFileCombineInputFormat extends
-
CombineFileInputFormat<LongWritable, Text> {
-
@Override
-
public RecordReader<LongWritable, Text> getRecordReader(
-
InputSplit split, JobConf job, Reporter reporter)
-
throws IOException {
-
@SuppressWarnings({ "rawtypes", "unchecked" })
-
Class<RecordReader<LongWritable, Text>> rrClass = (Class)CombineLineRecordReader.class;
-
return new CombineFileRecordReader<LongWritable, Text>(job,(CombineFileSplit) split, reporter,rrClass);
-
-
}
-
-
}
CombineLineRecordReader,这个其实没有什么内容,就是包装了一个Reader
-
package org.rollinkin.hadoop;
-
-
import java.io.IOException;
-
-
import org.apache.hadoop.conf.Configuration;
-
import org.apache.hadoop.io.LongWritable;
-
import org.apache.hadoop.io.Text;
-
import org.apache.hadoop.mapred.FileSplit;
-
import org.apache.hadoop.mapred.LineRecordReader;
-
import org.apache.hadoop.mapred.RecordReader;
-
import org.apache.hadoop.mapred.Reporter;
-
import org.apache.hadoop.mapred.lib.CombineFileSplit;
-
-
public class CombineLineRecordReader implements
-
RecordReader<LongWritable, Text> {
-
-
private LineRecordReader delegate;
-
-
public CombineLineRecordReader(CombineFileSplit split, Configuration conf,
-
Reporter reporter, Integer idx) throws IOException {
-
FileSplit fileSplit = new FileSplit(split.getPath(idx),
-
split.getOffset(idx), split.getLength(idx),
-
split.getLocations());
-
delegate = new LineRecordReader(conf, fileSplit);
-
}
-
-
@Override
-
public boolean next(LongWritable key, Text value) throws IOException {
-
return delegate.next(key, value);
-
}
-
-
@Override
-
public LongWritable createKey() {
-
return delegate.createKey();
-
}
-
-
@Override
-
public Text createValue() {
-
return delegate.createValue();
-
}
-
-
@Override
-
public long getPos() throws IOException {
-
return delegate.getPos();
-
}
-
-
@Override
-
public void close() throws IOException {
-
delegate.close();
-
}
-
-
@Override
-
public float getProgress() throws IOException {
-
return delegate.getProgress();
-
}
-
-
}
具体的使用我就不再留了,其实很简单,就是把你的InputFormat设置成MultiFileCombineInputFormat 就可以了(在2012-11-09之前提供了一个reader实际上是不可用,他存在跨块读取的问题,
这里就不在提供了。如果使用了,请更新一下。哎,又传播错误的消息了)
现存问题
-
-
合并后会造成mapper不能本地化,带来mapper的额外开销,需要权衡
-
这里只实现了简单的Text的方式的合并,对于可压缩的、二进制等文件没有提供
-
这里提供的自定义的实现,只是简单的按行读取
-