当前位置: > Linux集群 > Hadoop >

hadoop 网站日志分析

时间:2015-10-08 12:49来源:linux.it.net.cn 作者:IT

一、项目要求

 

  • 本文讨论的日志处理方法中的日志,仅指Web日志。其实并没有精确的定义,可能包括但不限于各种前端Web服务器——apache、lighttpd、nginx、tomcat等产生的用户访问日志,以及各种Web应用程序自己输出的日志。  

 

二、需求分析: KPI指标设计

 PV(PageView): 页面访问量统计
 IP: 页面独立IP的访问量统计
 Time: 用户每小时PV的统计
 Source: 用户来源域名的统计
 Browser: 用户的访问设备统计

下面我着重分析浏览器统计



 

三、分析过程

1、 日志的一条nginx记录内容

222.68.172.190  - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 
"http://www.angularjs.cn/A00n" 
"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"

2、对上面的日志记录进行分析

remote_addr : 记录客户端的ip地址, 222.68.172.190
remote_user :  记录客户端用户名称, –
time_local:  记录访问时间与时区, [18/Sep/2013:06:49:57 +0000]
request: 记录请求的url与http协议, “GET /images/my.jpg HTTP/1.1″
status:  记录请求状态,成功是200, 200
body_bytes_sent:  记录发送给客户端文件主体内容大小, 19939
http_referer:  用来记录从那个页面链接访问过来的, “http://www.angularjs.cn/A00n”
http_user_agent:  记录客户浏览器的相关信息, “Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36″  

3、java语言分析上面一条日志记录(使用空格切分)

 
1
2
3
4
5
String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /images/my.jpg HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
        String[] elementList = line.split(" ");
        for(int i=0;i<elementList.length;i++){
            System.out.println(i+" : "+elementList[i]);
        }

测试结果:

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
0 : 222.68.172.190
1 : -
2 : -
3 : [18/Sep/2013:06:49:57
4 : +0000]
5 : "GET
6 : /images/my.jpg
7 : HTTP/1.1"
8 : 200
9 : 19939
10 : "http://www.angularjs.cn/A00n"
11 : "Mozilla/5.0
12 : (Windows
13 : NT
14 : 6.1)
15 : AppleWebKit/537.36
16 : (KHTML,
17 : like
18 : Gecko)
19 : Chrome/29.0.1547.66
20 : Safari/537.36"




4、实体Kpi类的代码:
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
public class Kpi {
    private String remote_addr;// 记录客户端的ip地址
    private String remote_user;// 记录客户端用户名称,忽略属性"-"
    private String time_local;// 记录访问时间与时区
    private String request;// 记录请求的url与http协议
    private String status;// 记录请求状态;成功是200
    private String body_bytes_sent;// 记录发送给客户端文件主体内容大小
    private String http_referer;// 用来记录从那个页面链接访问过来的
    private String http_user_agent;// 记录客户浏览器的相关信息
    private String method;//请求方法 get post
    private String http_version; //http版本
    
    public String getMethod() {
        return method;
    }
    public void setMethod(String method) {
        this.method = method;
    }
    public String getHttp_version() {
        return http_version;
    }
    public void setHttp_version(String http_version) {
        this.http_version = http_version;
    }
    public String getRemote_addr() {
        return remote_addr;
    }
    public void setRemote_addr(String remote_addr) {
        this.remote_addr = remote_addr;
    }
    public String getRemote_user() {
        return remote_user;
    }
    public void setRemote_user(String remote_user) {
        this.remote_user = remote_user;
    }
    public String getTime_local() {
        return time_local;
    }
    public void setTime_local(String time_local) {
        this.time_local = time_local;
    }
    public String getRequest() {
        return request;
    }
    public void setRequest(String request) {
        this.request = request;
    }
    public String getStatus() {
        return status;
    }
    public void setStatus(String status) {
        this.status = status;
    }
    public String getBody_bytes_sent() {
        return body_bytes_sent;
    }
    public void setBody_bytes_sent(String body_bytes_sent) {
        this.body_bytes_sent = body_bytes_sent;
    }
    public String getHttp_referer() {
        return http_referer;
    }
    public void setHttp_referer(String http_referer) {
        this.http_referer = http_referer;
    }
    public String getHttp_user_agent() {
        return http_user_agent;
    }
    public void setHttp_user_agent(String http_user_agent) {
        this.http_user_agent = http_user_agent;
    }
    @Override
    public String toString() {
        return "Kpi [remote_addr=" + remote_addr + ", remote_user="
                + remote_user + ", time_local=" + time_local + ", request="
                + request + ", status=" + status + ", body_bytes_sent="
                + body_bytes_sent + ", http_referer=" + http_referer
                + ", http_user_agent=" + http_user_agent + ", method=" + method
                + ", http_version=" + http_version + "]";
    }
 
    
    
}





5、kpi的工具类
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package org.aaa.kpi;
 
public class KpiUtil {
    /***
     * line记录转化成kpi对象
     * @param line 日志的一条记录
     * @author tianbx
     * */
    public static Kpi transformLineKpi(String line){
        String[] elementList = line.split(" ");
        Kpi kpi = new Kpi();
        kpi.setRemote_addr(elementList[0]);
        kpi.setRemote_user(elementList[1]);
        kpi.setTime_local(elementList[3].substring(1));
        kpi.setMethod(elementList[5].substring(1));
        kpi.setRequest(elementList[6]);
        kpi.setHttp_version(elementList[7]);
        kpi.setStatus(elementList[8]);
        kpi.setBody_bytes_sent(elementList[9]);
        kpi.setHttp_referer(elementList[10]);
        kpi.setHttp_user_agent(elementList[11] + " " + elementList[12]);
        return kpi;
    }
}

6、算法模型: 并行算法 

Browser: 用户的访问设备统计
– Map: {key:$http_user_agent,value:1}
– Reduce: {key:$http_user_agent,value:求和(sum)} 





7、map-reduce分析代码

 

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import java.io.IOException;
import java.util.Iterator;
 
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.hmahout.kpi.entity.Kpi;
import org.hmahout.kpi.util.KpiUtil;
 
import cz.mallat.uasparser.UASparser;
import cz.mallat.uasparser.UserAgentInfo;
 
public class KpiBrowserSimpleV {
 
    public static class KpiBrowserSimpleMapper extends MapReduceBase
        implements Mapper<Object, Text, Text, IntWritable> {
        UASparser parser = null;
        @Override
        public void map(Object key, Text value,
                OutputCollector<Text, IntWritable> out, Reporter reporter)
                throws IOException {
            Kpi kpi = KpiUtil.transformLineKpi(value.toString());
 
            if(kpi!=null && kpi.getHttP_user_agent_info()!=null){
                if(parser==null){
                    parser = new UASparser();
                }
                UserAgentInfo info =
                parser.parseBrowserOnly(kpi.getHttP_user_agent_info());
                if("unknown".equals(info.getUaName())){
                    out.collect(new Text(info.getUaName()), new IntWritable(1));
                }else{
                    out.collect(new Text(info.getUaFamily()), new IntWritable(1));
                }
 
            }
        }
    }
 
    public static class KpiBrowserSimpleReducer extends MapReduceBase implements
        Reducer<Text, IntWritable, Text, IntWritable>{
 
        @Override
        public void reduce(Text key, Iterator<IntWritable> value,
                OutputCollector<Text, IntWritable> out, Reporter reporter)
                throws IOException {
            IntWritable sum = new IntWritable(0);
            while(value.hasNext()){
                sum.set(sum.get()+value.next().get());
            }
            out.collect(key, sum);
        }
    }
    public static void main(String[] args) throws IOException {
        String input = "hdfs://127.0.0.1:9000/user/tianbx/log_kpi/input";
        String output ="hdfs://127.0.0.1:9000/user/tianbx/log_kpi/browerSimpleV";
        JobConf conf = new JobConf(KpiBrowserSimpleV.class);
        conf.setJobName("KpiBrowserSimpleV");
        String url = "classpath:";
        conf.addResource(url+"/hadoop/core-site.xml");
        conf.addResource(url+"/hadoop/hdfs-site.xml");
        conf.addResource(url+"/hadoop/mapred-site.xml");
        
        conf.setMapOutputKeyClass(Text.class);
        conf.setMapOutputValueClass(IntWritable.class);
        
        conf.setOutputKeyClass(Text.class);
        conf.setOutputValueClass(IntWritable.class);
        
        conf.setMapperClass(KpiBrowserSimpleMapper.class);
        conf.setCombinerClass(KpiBrowserSimpleReducer.class);
        conf.setReducerClass(KpiBrowserSimpleReducer.class);
 
        conf.setInputFormat(TextInputFormat.class);
        conf.setOutputFormat(TextOutputFormat.class);
 
        FileInputFormat.setInputPaths(conf, new Path(input));
        FileOutputFormat.setOutputPath(conf, new Path(output));
 
        JobClient.runJob(conf);
        System.exit(0);
    }
 
}

 

8、输出文件log_kpi/browerSimpleV内容

AOL Explorer 1
Android Webkit 123
Chrome 4867
CoolNovo 23
Firefox 1700
Google App Engine 5
IE 1521
Jakarta Commons-HttpClient 3
Maxthon 27
Mobile Safari 273
Mozilla 130
Openwave Mobile Browser 2
Opera 2
Pale Moon 1
Python-urllib 4
Safari 246
Sogou Explorer 157
unknown 4685

8 R制作图片

 

data<-read.table(file="borwer.txt",header=FALSE,sep=",") 

 names(data)<-c("borwer","num")

 qplot(borwer,num,data=data,geom="bar")

 

 

 

解决问题

1、排除爬虫和程序点击,对抗作弊

解决办法:页面做个检测鼠标是否动。

2、浏览量 怎么排除图片

3、浏览量排除假点击?

4、哪一个搜索引擎访问的?

5、点击哪一个关键字访问的?

6、从哪一个地方访问的?

7、使用哪一个浏览器访问的?

 

 




(责任编辑:IT)
------分隔线----------------------------