一、集群的规划
Zookeeper集群:
Hadoop集群: 二、准备工作
1、安装JDK 三、配置Zookeeper(在192.168.176.131安装)在主节点(bigdata112)上配置ZooKeeper (*)配置/training/zookeeper-3.4.6/conf/zoo.cfg文件 dataDir=/training/zookeeper-3.4.6/tmp server.1=bigdata112:2888:3888 server.2=bigdata113:2888:3888 server.3=bigdata114:2888:3888
(*)在/training/zookeeper-3.4.6/tmp目录下创建一个myid的空文件 (*)将配置好的zookeeper拷贝到其他节点,同时修改各自的myid文件 scp -r /training/zookeeper-3.4.6/ bigdata113:/training scp -r /training/zookeeper-3.4.6/ bigdata114:/training (*)分别修改113和114上/training/zookeeper-3.4.6/tmp/myid为2和3 四、安装Hadoop集群(在bigdata112上安装)
1、修改hadoo-env.sh 2、修改core-site.xml <configuration> <!-- 指定hdfs的nameservice为ns1 --> <property> <name>fs.defaultFS</name> <value>hdfs://ns1</value> </property> <!-- 指定hadoop临时目录 --> <property> <name>hadoop.tmp.dir</name> <value>/training/hadoop-2.7.3/tmp</value> </property> <!-- 指定zookeeper地址 --> <property> <name>ha.zookeeper.quorum</name> <value>bigdata112:2181,bigdata113:2181,bigdata114:2181</value> </property> </configuration> 3、修改hdfs-site.xml(配置这个nameservice中有几个namenode) <property> <name>dfs.replication</name> <value>2</value> </property> <property> <name>dfs.webhdfs.enabled</name> <value>true</value> </property> <configuration> <!--指定hdfs的nameservice为ns1,需要和core-site.xml中的保持一致 --> <property> <name>dfs.nameservices</name> <value>ns1</value> </property> <!-- ns1下面有两个NameNode,分别是nn1,nn2 --> <property> <name>dfs.ha.namenodes.ns1</name> <value>nn1,nn2</value> </property> <!-- nn1的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn1</name> <value>bigdata112:9000</value> </property> <!-- nn1的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn1</name> <value>bigdata112:50070</value> </property> <!-- nn2的RPC通信地址 --> <property> <name>dfs.namenode.rpc-address.ns1.nn2</name> <value>bigdata113:9000</value> </property> <!-- nn2的http通信地址 --> <property> <name>dfs.namenode.http-address.ns1.nn2</name> <value>bigdata113:50070</value> </property> <!-- 指定NameNode的日志在JournalNode上的存放位置 --> <property> <name>dfs.namenode.shared.edits.dir</name> <value>qjournal://bigdata112:8485;bigdata113:8485;/ns1</value> </property> <!-- 指定JournalNode在本地磁盘存放数据的位置 --> <property> <name>dfs.journalnode.edits.dir</name> <value>/training/hadoop-2.7.3/journal</value> </property> <!-- 开启NameNode失败自动切换 --> <property> <name>dfs.ha.automatic-failover.enabled</name> <value>true</value> </property> <!-- 配置失败自动切换实现方式 --> <property> <name>dfs.client.failover.proxy.provider.ns1</name> <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value> </property> <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用一行--> <property> <name>dfs.ha.fencing.methods</name> <value> sshfence shell(/bin/true) </value> </property> <!-- 使用sshfence隔离机制时需要ssh免登陆 --> <property> <name>dfs.ha.fencing.ssh.private-key-files</name> <value>/root/.ssh/id_rsa</value> </property> <!-- 配置sshfence隔离机制超时时间 --> <property> <name>dfs.ha.fencing.ssh.connect-timeout</name> <value>30000</value> </property> </configuration> 4、修改mapred-site.xml <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration> 5、修改yarn-site.xml <configuration> <!-- 开启RM高可靠 --> <property> <name>yarn.resourcemanager.ha.enabled</name> <value>true</value> </property> <!-- 指定RM的cluster id --> <property> <name>yarn.resourcemanager.cluster-id</name> <value>yrc</value> </property> <!-- 指定RM的名字 --> <property> <name>yarn.resourcemanager.ha.rm-ids</name> <value>rm1,rm2</value> </property> <!-- 分别指定RM的地址 --> <property> <name>yarn.resourcemanager.hostname.rm1</name> <value>bigdata112</value> </property> <property> <name>yarn.resourcemanager.hostname.rm2</name> <value>bigdata113</value> </property> <!-- 指定zk集群地址 --> <property> <name>yarn.resourcemanager.zk-address</name> <value>bigdata112:2181,bigdata113:2181,bigdata114:2181</value> </property> <property> <name>yarn.nodemanager.aux-services</name> <value>mapreduce_shuffle</value> </property> </configuration> 6、修改slaves bigdata14 bigdata15 7、将配置好的hadoop拷贝到其他节点 scp -r /training/hadoop-2.7.3/ root@bigdata113:/training/ scp -r /training/hadoop-2.7.3/ root@bigdata114:/training/ scp -r /training/hadoop-2.7.3/ root@bigdata115:/training/ 五、启动Zookeeper集群进到zk的安装目录的bin目录下: 启动 ./zkServer.sh start 查看状态 ./zkServer.sh status 六、在bigdata112和bigdata113上启动journalnodehadoop-daemon.sh start journalnode 七、格式化HDFS(在bigdata112上执行)
2.将112上这台的/training/hadoop-2.7.3/tmp/dfs拷贝到bigdata13的/training/hadoop-2.7.3/tmp/dfs下 scp -r /training/hadoop-2.7.3/tmp/dfs/* root@bigdata113:/training/hadoop-2.7.3/tmp/dfs/ 3.格式化zookeeper hdfs zkfc -formatZK 日志: 17/07/13 00:34:33 INFO ha.ActiveStandbyElector: Successfully created /hadoop-ha/ns1 in ZK. 八、在bigdata12上启动Hadoop集群start-all.sh 日志: Starting namenodes on [bigdata12 bigdata13] bigdata12: starting namenode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-namenode-hadoop113.out bigdata13: starting namenode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-namenode-hadoop112.out bigdata14: starting datanode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-datanode-hadoop115.out bigdata15: starting datanode, logging to /root/training/hadoop-2.4.1/logs/hadoop-root-datanode-hadoop114.out bigdata13: starting zkfc, logging to /root/training/hadoop-2.7.3/logs/hadoop-root-zkfc-bigdata13.out bigdata12: starting zkfc, logging to /root/training/hadoop-2.7.3/logs/hadoop-root-zkfc-bigdata12.out bigdata113上的ResourceManager需要单独启动 命令:yarn-daemon.sh start resourcemanager 九、问题延伸1、隔离机制和隔离级别 (*)关系型数据库:如果不考虑事务隔离级别,造成脏读、不可重复读、幻读 (*)HDFS的HA:如果不考虑隔离机制(隔离级别),造成脑裂的问题 2、什么是脑裂的问题? 脑裂的问题,针对的是数据节点(DataNode) 由于某种原因,造成了整个HDFS中存在多个active的NameDode,这时候DataNode就不知道谁是真正的NameNode。 (责任编辑:IT) |